CHAPTER 2

PRELIMINARIES

2.1 Differential Equations

Definition 2.1.1 An equation containing the derivatives of one or more depen-
dent variables with respect to one or more independent variables is said to be a

differential equation (DE).

If an equation contains only ordinary derivatives of one or more dependent
variables with respect to a single independent variable, it is said to be an ordinary
differential equation (ODE). For example,
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are ordinary differential equations. An equation involving the partial derivatives
of one or more dependent variables of two or more independent variables is called
a partial differential equation (PDE). For example,
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are partial differential equations.
The highest order derivative present in a differential equation is called

the order of the differential equation. Therefore,
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differential equation (1) and (4) are of the second order while (2) and (3) are of
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the third and first orders, respectively.
We can express an nth order ordinary differential equation in one depen-

dent variable by a general form

Flz,yy,...,y™) =0, (2.1)
where F' is a real valued function of n + 2 variables, z, 4,7/, . .., y(”), and where
y( = 'y

dzn

An nth order ordinary differential equation (2.1) is said to be linear if F’
is linear in 4, v/, ..., ™. This means that an nth order ODE is linear when (2.1)
is an(2)y™ + an_1(@)y™ "V + . + a1(2)y’ + ag(z)y ~ g(z) =0 or
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From (2.2) we see two characteristic properties of linear differential equations.
First, the dependent variable and all its derivatives are of the first degree. That
is, the power of each term involving y is 1. Second, each coeflicient depends at

most on the independent variable . The equations
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are, in turn, linear first, second, and third order ordinary differential equation. A
nonlinear ordinary differential equation is simply one that is not linear. Nonlinear
functions of the dependent variable or its derivatives, such as siny or e¥ , must

not appear in a linear equation. Therefore,
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are examples of nonlinear first, second, and fourth order ordinary differential equa-

tions, respectively.

~ Definition 2.1.2 Any function ¢, defined on an interval I and possessing at least

n derivatives that are continuous on I, which when substituted into an nth order



ordinary differential equation reduces the equation to an identily, is said to be a

solution of the equation on the interval.

The interval T in Definition 2.1.2 is also called the interval of definition,
the interval of exzistence, the interval of validity, or the domain of the solution. It
can be an open interval (g, b), a closed interval [a, 8], or an infinite interval (a, co).

The graph of a solution ¢ of an ODE is called a solution curve. Since ¢
is a differentiable function, it is continuous on its interval I by definition. Thus
there may be a difference between the graph of the function ¢ and the graph of
‘the solution ¢. That is, the domain of the function ¢ need not be the same as the

interval I of the definition of the solution ¢.

2.2 Initial and Boundary Value Problems

2.2.1 Initial Value Problems

We are often interested in solving a differential equation subject to pre-
scribed side conditions. That is the condition that are imposed on the unknown

solution y = y(z) or its derivatives. On some interval I containing zo, the problem
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y(z0) = v0, ¥'(20) = ¥1, -+ ¥ (Z0) = Yn-1,
where o, 41, ..., Yn—1 are arbitrarily specified real constants, is called an initial

value problem (IVP). The values of y(z) and its first n — 1 derivatives at a single
point z¢ : y(zo) = o, ¥'(®0) = ¥1, .-+, v (zg) = yn-1 are called initial
conditions. The problem given in (2.3) is also called an nth order initial value

problem. For example,

W fe) v =w, (2.4

and
dgy ; ,
-7 = f@y.y), vl =w, Y (%) = w1, (2.5)

~ are first- and second-order initial value problems, respectively. These two problems

are eagy to interpret in geometric terms. For (2.4) we are seeking a solution of



the differential equation on an interval I containing zp so that a solution curve
passes through the prescribed point (zg, yg). For (2.5) we want to find a solution
of the differential equation whose graph not only passes through (zp, yo) but also,

the slope of the curve at this point is 3.

2.2.2 Boundary Value Problems

Another type of problem consists of solving a differential equation of order
two or greater in which the dependent variable y or its derivatives are specified at

different points. A problem such as

y(a) =yo, (b)) =u,
is called a boundary value problem (BVP). The prescribed values y{a) = yp and
y(b) = y1 are called boundary conditions. A solution of the previous problem is a
function satisfying the differential equation on some interval I, containing a and
b, whose graph passes through the two points (a,yp) and (b,y1).
For a second order differential equation, other pairs of boundary condi-

tions could be

y(a) =15, vyb)=wn
yla) =y, ') =m
y'(a) =y0, ¥ () =wu

where 15 and 1 denote arbitrary constants. These three pairs of conditions are

just special cases of the general boundary conditions

oqy(a) + Hry'(a)
oy (b) + Bay/ (b)

T
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The problem consisting of nonlinear differential equation with initial con-
ditions is called a nonlinear initial value problem. And the problem consisting

~ of nonlinear differential equation with boundary conditions is called a nonlinear

 boundary value problem.



2.3 Systems of First Order Differential Equations
Consider the following system of n first order differential equations :

yll = fl(m$y1’y2a"':yn)
yé _= fz(:r’.!yl’y‘zi"‘}yﬂ)

(2.6)
y"f’], - fﬂ(a:?yl:yz!"')yn)
where y;, (1 =1,2,...,n) are real valued functions of the independent variable z
and f;, (¢ =1,2,...,n) are real valued functions of z,y1,...,yn. Let
n
Y2
y = .
Yn

be a vector of real valued functions. Then the vector
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Then the system (2.6) may be represented more concisely by the vector differential
equation

y =1(z,y) (2.7)

and a solution of (2.7) on an interval I is a vector of functions which has a con-

tinuous first derivative and satisfies (2.7) on I.



2.4 Existence and Uniqueness Theorems

The vector initial value problem which corresponds to the scalar initial

value problem 3’ = f(z,y); y(zg) = cp is

Y =f(z,y); y(z0) = co, (2.8)

where c¢p is a constant vector. That is a vector with components which are real

numbers. Hence, an initial value problem for a system of equations is to find a

solution of (2.7) subject to the conditions y(zg) = co.

Theorem 2.4.1 Let f(z,y) be a vector whose components, fi, fo,..., fn, are all
continuous functions of T,y1,v2,...,yn. Lhat is, let f(z,y) € C where C is the set
of all continuous real valued functions on R. Then y is a solution of the IVP (2.8)
on an interval I about zg if and only if y satisfies the integral equation

)=+ [ 1, y(0))dt

0

forallz el

See [4] for more details.

There is a close relationship between nth order differential equations
which are written in normal form and a system of n first order differential equa-

tions. We wish to exhibit this relationship and then exploit it. Consider the nth

order differential equation.

y™ = f(z,y,y,..., 5. (2.9)

Let y1 =y, %2 = ¥, ..., yn = ¥ 1. Then the nth order differential equation

(2.9) may be rewritten as

Vo= 1 = fi(z,y)
Yy = 13 = fa(z,y)
; ; (2.10)
Yn_1 = Yn = fr-1{(2,Y)

!

n = .f(x?ylayZ:'-':yn) = fn(-T:Y)



Hence, the nth order differential equation (2.9} is equivalent to the system of n
first order differential equations (2.10). Observe that (2.10) is a special case of
(2.7). Recall that the initial value problem associated with (2.7} is

y =fz,y), ¥y(zo) = co. (2.11)

Making use of the correspondence between (2.9) and (2.10), we see that the initial
conditions for (2.9) which are equivalent to the initial conditions y(zp) = ¢g for
(2.10} are

y1(z0) = y(mo) = c1, ya(m) = ¥'(w0) = c2y - -+, Ynl@o) = ¥V (z0) = cn.

Hence, the initial value problem associated with (2.9) which is equivalent to (2.11)
is
y® = f(z,9,¢,. ., y"Y),

(2.12)
y(zo) = c1, y2(z0) = ¢/'(30) = €2, - - -, Yn(0) = " (wg) = cn.

It is easy to see that fi(z,¥) = y9, fa(z,¥) = u3, ..., fa—-1(2,¥) = yn are all conti-

nuous in any domain D of (z,y)-spaceand fori =1,2,...,n~land j=1,2,...,n

8fi )0, j#i+1
dy; 1, §=i+1.

‘Theorem 2.4.2 If f(z,v,7/,...,4 1)) € C and has continuous first partial deriva-
tives with respect to v, 1, ...,y Y on some bounded domain D and if

(zo,c1,...,cn) € D, then there ezists a unique solution to the IVP (2.12) on some
interval about zg and this solution can be eztended uniquely until the boundary of

D is reached.

See [4] for more details.

2.5 Interval of Definition and Extension of Solutions

The interval of definition and extension of solution, were treated in de-
_ tails in [3]. The domain of the function y(z}, y2(z),. .., ya(z) that constitute the

~ solution of the given initial value problem can be extended beyond the bounds



guaranteed by the existence theorem, In fact, the functions y1(z), y2(z), ..., yn(z)
determined by the theorem in the interval [zg — 6,z + 6] assume for z = zp +
values y1(zg + 6), ya{zg + 8),...,yn(zo + &), and these can be considered initial
conditions of an initial value problem relative to the same system. The solution
of this problem will be defined in an interval [z +6 — 61, 2o + 6 + 1] where 81 will
depend on the maximum value that the functions |f;(z,y1,¥2, ..., Yn)| assume in

a rectangular domain of R®*! of the form

zp+é—a1 < 7 < o+ 6 +a,
yi(zo+98) -0 < y < wilzo+d)+bh (1=1,2,...,n).

This domain is contained in the set J where the functions fi(r,y) are defined.
By the uniqueness theorem, both the primitive solution and the solution just now
obtained must coincide in the interval [zg + 6 — 61, o + 8 + d1). The new solution
is an eztension of the primitive one into a bigger interval. By repeating this
extension, we arrive at an interval larger than the original interval in which the

solution is defined. It is clear that this may not happen in the case of

y.r — y2.

The solution of this for which y(zg) = yp > 0 is the function

_ Y0
1 - yo(z — z0)

y(z)

It is defined in the interval [mg,wg + 515) and may not be extended beyond this
interval to the right because at the right-hand endpoint the solution becomes

infinite.

2.6 Shooting Method

One way to approximate a solution of a BVP v" = f(z,v,v'),y(a) = o,
y(b) = B is by the shooting method [7]. In this method, the starting point is the

replacement of the boundary value problem by an initial value problem

"

y' = f(z, 9,9, y(a) = a, ¥'(a) = m1. (2.13)
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The number m; in (2.13) is simply a guess for the unknown slope of the solu-
tion curve at the known point (a,y(a)). We then apply one of the step-by-step
numerical techniques to the second order equation in (2.13) to find an approxima-
tion 1 for the value of y(b). If §; agrees with the given value y(b) = § to some
pre-assigned tolerance, we stop; otherwise the calculations are repeated, starting
with a different guess y'(a) = ﬁg to obtain a second approximation f for y(b).
The process is repeated until the solution of the initial value problem agrees with

the specified tolerance y{(b} = S3.

2.7 Continuous Dependence

Saperstone mentioned the use of continuous dependence on initial condi-

tion in [5]. The solution ¥ = ¢(z) of the initial value problem

Y fey)  v@) =w,

may be thought of as a function of the initial point (zg, %), as well as a function

of z. Consider, for instance, the linear initial value problem

dy 1 1,
T tsY=7 sin(z/2), y(0) = wo,

whose solution is

y= e~/ %y +é (sing — ¢OS g + e‘“”ﬂ) :

Notice how the solution depends on yy as well as . Indeed, the solution depends
continuously on yg. This dependence is readily visualized by considering y as a
function of both z and g and graphing the resulting surface. Figure 2.1 illustrates
such a surface. The near edge of the surface represents the solution corresponding
to 70 = —1. As yp increases from -1 to 1, the graphs of the resulting solutions
sweep out the surface from the near edge to the rear edge. The rear edge represents
the solution corresponding to o = 1. The z-interval for all solutions is fixed at

0 < z < 8. The important thing to observe from Figure 2.1 is the smoothness of

~ the surface. It is this smoothness that illustrates the continuity of y with respect

to both z and yg.
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Figure 2.1: A surface representing y = e~ 2yg + i (sin% — cos § + e~%/ 2)

The subject of continuous dependence of solutions on initial values is an
important topic for a number of reasons. When an IVP serves to model a real
problem, the initial value yp is often measured experimentally. Small errors in
this measurement should produce only small changes in the solution which is the
essence of continuity.

Another illustration of the continuous dependence of a solution on initial

values may be found in the (nonlinear) TVP

dy o .
=Y y(0) = wo,

whose solution is
Yo
ayg+1
Again, y is a continuous function of z and yg, provided zyo + 1 # 0.

y:

2.8 Convex and Concave Functions

We will now give some definitions and theorems of convex functions.

Definition 2.8.1 Let I be an open interval. Let f be o function I — R. [ is said

to be convex if

Fha+ pb) < Af(a) + uf (b)
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foralla,be I and all A, p € R such that A >0, p >0, A+ pu=1.

Theorem 2.8.1 Let I be an open interval. Let f : I — R be twice differentiable.
The f is convez if and only if f"(z) > 0 for allz € 1.

A function ¢ is said to be concave if —g is convex. Hence, we have a

definition and a theorem for concave function g.

Definition 2.8.2 Let E be an open interval. Let g be a function ' — R. g is said

to be concave if
g(re+ ud) > Ag(c) + pg(d)
forallc,de E and all \,p € R such that A >0, u >0, A+ p =1

Theorem 2.8.2 Let E be an open interval. Let g : E — R be twice differentiable.
The g is concave if and only if ¢"(xz) <0 forallz € E.

See {6] for more details.

2.9 Definition of Limits

We will now give some definitions for function f(z).

Definition 2.9.1 Let f be ¢ real funclion whose domain D contains points in every

interval of the form (B, co) where B > 0 and let L € R. Then

lim f{z)=1L

T30

if and only if for each & > 0 there ezists a N > 0 such that | f(z)— L| < &€ whenever
z€Dandz > N.

Definition 2.9.2 Let f be a real function whose domain D contains points in every
interval of the form (B, 0o) where B > 0. Then

Jig, (o) = s

if and only if for each M > 0 there exists a N > 0 such that f(z) > M whenever
z€D andz > N.

See [2] for more details.



