CHAPTER 3

MAIN RESULTS

Since we will prove the existence of nonnegative symmetric solutions, we

will consider the equivalent boundary value problem

y'(z) + flz,y) =0, asz< (3.1)

v =0, v(>2% =0 (3.2)

We use ||yil to denote the sup-norm on ¢ < z < Il-"zfﬂ By IVP(m}, we denote the

initial value problem consisting of (3.1) with the initial conditions

y(a) =0, y(a)=m=0. (3.3)

We use ym(z) to denote the solution of (3.1) and (3.3).

3.1 Four Basic Lemmas

In this section, we introduced the main idea that will be used in section 3.2.
That is, to provide conditions on the nonlinear function f(z,y) which guarantees

that the BVP (1.3), (1.4) has an odd nonnegative symmetric solutions.

Lemma 3.1.1 Suppose f : [a,z1] x R — [0,00) is continuous and y = ¢{(z) is a

nonnegative solution of
y' + flz,y) =0, y(a)=0, for a<z<m.

Then ' 9 / 2
(¢ (;)) _ (¢ (;1)) = F(z, §(z1))

where  F(z,y) = [ f(z, u)du.
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Proof. Since ¢"(z) = —f(z, ¢(z)),
¢'(2)¢"(z) = ~f (2, $(2))¢'(2)

on [a, z1], and integrating with respect to z from a to x1, we have

f Y@ @ds = - [ fe6(z)d (@)ds
¢' (1) dlzr)
/ S@dd ) = - / £(z, () d($(z))
@' (a) ¢(cz) |
l; T 2 1 2 (1
(¢’ (21)) _ (¢ (za)) 2. _L f(.’r,u)du
(a))2 "1 ))2 Pl{r1)
GO L [ ewn = P o).

Lemma 3.1.2 Suppose for some 0 < d and [ : [a,b] x R — [0,8d] is continuous.
Then

(a) Any solution ym(z) of IVP(m) ezists for a < x < oo and satisfies
m ~ 8d(z — a) < Ym(z) < m (3.4)
m(z - a) = 4d(z — a)? < ym(s) < m(z - a) (3.5)
for z > a;
(b) Any solution y(z) of BVP (8.1) and (3.2) satisfies y (552) < d(b~ a)?; and
if f(z,y) # 8d on [a, 2] x [0,d(b — a)?], then y (52) < d(b — a)?.

The notation f(z,y) # 8d on [a, %¢] x [0, d(b — a)?] means that f(z,y) not equal
to 8¢ throughout an interval [a, 52] x [0,d(b - a)?].
Proof. Since 0 < f(z,ym(z)) < 8d, then

b+a
5

-84 < yn(@) = —flz.ym(e)) £ 0, a<z<
Integrating with respect to z from a to z, we have

T T
—f 8dds < ] yr(s)ds <0

—8d{(z —a) < 0
m — 8d(z — a)
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m, forz > a.



Integrating with respect to = from a to z again, we have

m(z — a) — 4d(z — a)* < ym(z) — ym(a) < m(z —a)

<
m(z — a) — 4d(z — a)® < Ym{z) < m(z —a), forz>a.

These bounds on ym(z), 3, (z), together with standard theorems on the
maximum interval of existence imply that the solution ym(z) exists for all z > a.

For part (b), since v(z) = —4dz? + 4d(b+ a)z — 4dab is a solution of the

(z) +8d=0, va)=0,v ((b—"'z“i’)) ~0.

Letting « = v — y and since f(z,y) < 8d, then we get

problem

u' =" -y = f(z,y(z)) —84 < 0.

By integrating with respect to z from = to (b+ a)/2, we have

(b-ta) /2 {b+a)/2
f o (3)ds f [0"(s) — ¢(s)] ds < 0
X T

(b +a)/2) —(z) = V(b +0)/2) —v'(z) ~ ¥ ((b+a)/2) +¥/(x) <O
w(z) = v'(z) - o' (z) > 0.

By integrating with respect to z from a to (b + a})/2, we get

u((b+a)/2) — u(a) = v((b+a)/2) —v(a) ~ y((b+a)/2) +yla) 2 O
u((b+a)/2) = v((b+a)/2) —y((b+a)/2) 2 O

() 25 - (e 15) -

Since u/(z) is non-increasing on [a, (b + a)/2] and from w'((b + a}/2) = 0, hence
if f(z,y) # 8d on [a, (b+a)/2] x [0,d(b — a)?], then we get u'(a) > 0. So u(z)
is strictly increasing at z = a, and from u(a) = 0, we have u((b + a)/2) =
w{(b+a)/2) — y((b+ a)/2) > 0, therefore y (432) < v (52) = d(b — a)*,
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Lemma 3.1.3 Suppose for some 0 < d and f : [a,b] x [0,d(b— a)?] — [0,84d] is
continuous with f(z,y) % 8d on [a, (b + a)/2] x [0,d(b— a)?]. Then there exist
51 and m1 such that 0 < 51 < my < 4d(b — o} and

Yo, (b +0)/2) = 0, ys, (b + a)/2) < d(b—a)?,
g ((b+a)/2) >0, ym((5+a)/2) < d(b—a)?  for all m € (s1,m).

Moreover, there is no solution y(z) of the BVP (3.1), (3.2) for which |jyl| <
d(b — a)? and ¥'(a) > s1.

Proof. Extend the function f(z,y) from [a,b] x [0,d{b—@a)?] to [a,b] X R by
flz,y) = f(z,0) for y < 0 and f(z,y) = f(z,d(d — a)®) for y > d(b — a)?, then
fila,b] x R — [0,8d]. Let

S = {52 0: (b +a)/2) = 0).

From Lemma 3.1.2(a) we know that y/,((b+0a)/2) > 0 and ym((b+a)/2) > d(b~a)?
if m > 4d(b — a). Thus S is bounded above. Since y5((b+ a)/2) < 0, then by
continuous dependence of a solution on initial value m there is s € [0,4d(b — a))
such that ¥.((b+a)/2) = 0s0 S # 0. Let 51 = sup S. Then by continuous

dependence of a solution on initial value m, we get

Yo, ((b+a)/2) = 0.

So that ys, (z) is a solution of the BVP (3.1), (3.2). Then by Lemma 3.1.2(b)
implies that ys, ((b+a)/2) < d(b—a)? and by Lemma 3.1.2(a) we have s; (22 — a) - 7
4d (8 — a)2 < ys, (52), 50 51 < 4d(b — a). By the definition of s; guarantees
that there is no solution y(z) of the BVP (3.1), (3.2) with ||y|| < d(b — a)? and
y'(a) > s1. (If {lyml] < d(b— a)?, then yy, is a solution of IVP(m) with the
unextended f. )

Since s; is the supremum of S, then there is no m > s; such that
yh ((b+a)/2) =0, and from y/,((b + a}/2) > 0 for m > 4d(b — a) implies that
yh.((b +a)/2) > 0 for m > s;. Thus by continuous dependence of a solution on

initial value m, we can choose m1 € {81, 4d(b — a)) very close to s; such that

yh (b+a)/2) > 0 and yn((b+a)/2) <d(d—a)® for all m € (s1,m1).
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Lemma 3.1.4 Suppose 0 < ¢ < %(b —a)?, f :[a,b] x [0,d(b — a)?] — [0,8d], is
continuous with f(z,y) # 8d, on[a, (b+a)/2] x [0, d(b~a)?], and f(z,y) > (Tl_%g
for (z,y) € [a,b] % [c,3¢/2]. Then there exist my, s3,m3 such that 0 < my < 53 <
mg < 4d(b — a) and

Uma (b + a)/2) <O, ym,((b+3a)/4) =<,
ym((b+3a)/4) > ¢ for all m > my for which ||yml| < d(b — a)?,
Ve (0+)/2) =0, |lys|| < d(b— a)?,

Y ((b+a)/2) >0, ym((b+a)/2) <d(b- a)? for all m € (s3,ms).

Moreover, there is no solution y(z) of the BVP (8.1), (3.2) for which |ly|} <
d(b — a)? and y'(a) > s3.

Proof. Extend the function f(z,y) from [a,b] x [0,d(b — a)?] to [a,b] x R by
flz,y) = f(z,0) for y < 0 and f(z,y) = f (2,d(b - a)?) for y > d(b — a)’, then
f:la,b] X R = [0,84). Let

8 ={s>0:y((b+3a)/4) < c}.
For s > ¢ + d(b - @), by Lemma 3.1.2(a) implies that
ys((b+3a)/4) > s((b +3a)/4 — a) — 4d((b+ 3a)/4 — a)?
= s((b-a)/4) = S~ a) > c.
Thus s € 9, so S is bounded above. By Lemma 3.1.2(a) implies that
yo((b+3a)/4) < 0.

Thus 0 € §,s0 S # 0. Let mg = sup S, so that my < b—"_% + d(b — a). Then by

continuous dependence of a solution on initial value m, we get

Yy (6 + 30)/4) = .

Now, we will show that yf,, (2£32) < 2.

~we have y,, (2488) > 5. Since f (M2, ym, (M) = f(2422,¢) > 0, then

Yrn (5’-"—;1-32) < 0. And since y,ﬁnz (z) is non-increasing on {a, (b + a)/2)], thus y/,,(z)

Supposing the contrary,
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b+3a
3

is strictly decreasing at x = Hence y;,,(z) > ¥, ( 1

e<z< 1%3“. Then we have

Ym (0 + 3a)/4) = ym, (b + 3a)/4) — yrm, (a)
= Ym, (2) (b + 30)/4 — a)
>( i )(b—a)=c for some a < z < (b+ 3a)/4

b—a 4

which contradicting the definition of 71z, Therefore y/, (¥32) < <.

Next we will show that y;.,((b-+a)/2) < 0. Supposing the contrary, then
Y, (b +0)/2) > 0, s0 yp,, (x) = 0 on [(b + 3a)/4, (b + a)/2]. Let

b+3a b+a 3e
e foe [ 12 i ]

Since Ym, (22) = ¢, ym,(e) < %, and ym,(z) is non-decreasing, we have

yﬁlz(w) = —f(, Ym, (7)) < —(16¢) /(b — a)2 for (b+3a)/4 <z <e

Integrating with respect to z from (b + 3a)/4 to z, we get

Yy (T) = Yomg (b + 3a)/4) < _ﬁ (x_ bz&;) |

Thus

de 16¢ (_M) (3.6)

ma (2) < b T (b—a)? 4

—a
Integrating with respect to z from (b+ 3a)/4 to = again, we get

b+ 3a 4e b+ 3a 8¢ b+ 3a)>
Ymal®) = Yma \ 7~ ) <5\ T T ) T\ T )

Therefore

() <c+ dc __b-i-3a _ 8c m_b+3a 2
Yma B} < CT o\ T T TG (b — a)2 i )

—a

Since the right hand side of this inequality is strictly increasing on [2t3e, 2a] it

can be concluded that

dc (b+a b+3a)  8c b+a_b+3a)2_§g
b—a\ 2 4 (b—a)2 \ 2 4 h

ymg(€) < ¢+ 5
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By the definition of e, it implies that ¢ = (b+a)/2 and by inequality (3.6) we have

. [b+a < 4c 16¢ b+a b+3a —0
Yma \ 73 b—a (b- a2\ 2 i )"
which contradicting with y,,((b + a)/2) = 0. Therefore y,,, ((6+ a}/2) <0.
Since my is supremum of S = {s > 0: ys((b + 3a)/4) < c}, then by con-

tinuous dependence of a solution on initial value m implies that y,((b+3a)/4) > ¢

for all m > ma. Let
T={s>mg:y((b+0a)/2) =0}

By Lemma 3.1.2(a), v((b + @)/2) > O and ym((b + a)}/2) > d(b - a)? for
m > 4d(b — a). Thus T is bounded above. Since 3/}, (%) < 0 and ¢/, (&42) >0
for m > 4d{b— a), then by continuous dependence of a solution on initial value m
there exists s € (mg, m) such that y'((b+a)/2) =0so T # §. Let s3 =sup T

By continuous dependence of a solution on initial value m, we have

Va6 0)/2) =0,

Therefore ys, () is a solution of the BVP (3.1), (3.2). Then from Lemma 3.1.2(b),
yss ((b+a)/2) < d(b—a)? and from Lemma, 3.1.2(a), s3 (52 — o) —4d (52 — a)2 <
yes((b+a)/2), 50 s3 < 4d(b—a). By the definition of s3 guarantees that there is no
solution of the BVP (3.1), (3.2) with ||y|| < d(b—a)? and ¢/(a) > s3. By continuous
dependence of a solution on initial value m, we can choose m3 € (s3,4d(b — a))

very close to s3 such that

v ((b+a)/2) > 0 and ym((b+ a)/2) < d(b~— a)?  for all m € (s3,m3).

3.2 Existence of Odd Number of Solutions

For odd number of solutions of the BVP (1.3), (1.4), we guarantee the

existence of nonnegative symmetric solutions by the following theorem.

Theorem 3.2.1 Suppose k > 0 is an integer, 0 < dp(b—a)? < c1 < L(b—0a)® <
@< hph-_a)? < <o < (b a)?, and f: [0,] X [0, dy(b - a)?] — [0, 8dlk]



is continuous with f(z,y) Z 8dy on [a, (b+ a)/2] % [0, dy(b — a)?] and satisfies

Flz,y) <8dy for a<z <b 0<y<do(b—a)%

16¢; 3e;
> ) <z< <y < L = oLk
f(m,y)u(b 2)? for a<z <b, ¢y <y < 5 , forg=1,2,... .k

flz,y) <8d; for a<a<h 0<y<djb—a)?, forj=1,2,... k.

Then the boundary value problem (1.3), (1.4) has ot least 2k + 1 nonncgative
symmetric solutions yi,ya, ..., Y1 with 0 < yi(a) < ypla) < -+ < yhy,q(a).
Moreover, y;(z) is strictly positive on (a,b) for j = 2,3,...,2k + 1, y2j+1({b +
3a)/4) > ¢; for § =1,2,...,k, and y1((b+ a)/2) < do(b— a)* < ya((b+ a)/2) <

y3((b+a}/2) < di(b—a)? < - < dp—1(b-a)? < yar((b+a)/2) < yausa((b+a)/2) <
dr(b — )% Finally, if f(a,0) > 0, then y1 is strictly positive on (a,b).

Now, we use Lemmas 3.1.3 and 3.1.4 to prove Theorem 3.2.1. We illustrate

the proof for the case k¥ = 2, where there are at least five nonnegative symmetric

‘solutions. The proof for the general case is very similar.

From Lemma 3.1.3 (with d = dg) gives us s1,m; such that 0 < 5 <
m1 < 4dp(b — a) and

Y, (0+@)/2) = 0,45, (b + 0)/2) < do(b — 0%,
(b+a)/2) > 0, ym, (b + 0)/2) < do(b — a)*.

@"‘
3
—

By using Lemma 3.1.4 (with ¢ = ¢1, d = di), we obtain my, 53, m3 such that

0 < mp < 83 <mg < 4dy(b— a) and

Yma (b +@)/2) <0, ym,((b+3a)/4) = a1,
ym((b+ 3a)/4) > ¢1 for all m > my for which ||yu|| < di(b— a)?,
Yoo (0+0)/2) =0, llysall < d1(6 - 0)?,
Yo ((0+0)/2) > 0, ymg((b+0)/2) < a6 - a)*.

By applying Lemma 3.1.4 again (with ¢ = cg, d = dy), we obtain my, s5, m5 such

that 0 < my < 85 < my < 4da(b — ) and



Yms (0 +0)/2) <0, ym,((b+30)/4) = ca,
Ym((b + 3a)/4) > ¢a for all m > my for which ||ym|| < dafb— a)?,
Ui (b +a)}/2) =0, |lysll < da(b ~a)?,

U (0 +0)/2) > 0, yms((b+0)/2) < da(b~ a)*.

We claim that m1 < mgy. Supposing the contrary, that is m; > mg, from above we
have ym, ((b43a)/4) > c1 and ym, ((b+0a)/2) < do(b—a)?. But ym, (z) is increasing
on [(b+ 3a)/4, (b+ a)/2], 50 c1 < Ym, (b 3a)/4) < Ym, (b + @)/2) < do(b — a)?,
then it contradicts with do(b—a)? < c1. Therefore m; < mp. Since yj,, (1”2'—“) >0
and yh, (%42) < 0, then by continuous dependence of a solution on initial value

m there exists s € (mq, ma) such that

Ys, (b +a)/2) = 0.

Similarly, we have m3 < mq because if mg > my then ym, ((b+3a)/4) > e
and Y, ((b+a)/2) < d1(b—a)?. But ym,(x) is increasing on [(b+3a)/4, (b+a)/2},
50 €2 € Yms (b + 3a)/4) < yms((b + @)/2) < di1(b — a)?, which contradicts with
di(b — a)® < c. Since Y, ((b+a)/2) > 0 and ¥}, ((b+ a)/2) < 0, then by
continuous dependence of a solution on initial value m there exists s4 € (ms, m4)

such that
Ys, (0 +0)/2) = 0.

Since 0 < 81 < m1, $2 € (M1, Mm3),0 < ma < 83 < M3, 54 € (M3, my), and
0<my < s5 <ms, 50 0< 8] <89 < 83 <384 < 85. Therefore, ys,, Ysys Yssr Ysar Uss

are five nonnegative solutions of the BVP (3.1), (3.2). Since y5, (a) = s, we have
0 < 45, (@) < ¥sy(a) < g, (@) <5, (@) <y, (a).

Next, we will show that ys, is strictly positive on (a,d) for j = 2,3,4,5.

Since we know that y,,(z) is non-decreasing on [a, (b + a)/2], and y, (a) > s1 2

0, ys;{a) = 0 for j = 2,3,4,5, then y,,(z) > 0 on (a,(b+a)/2] for j = 2,3,4,5.

By the symmetry about z = (b + a)/2, hence y,,(z) is strictly positive on (a, b)
for § = 2,3,4,5.
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Next, we show that ys, ((b + 3a)/4) > ¢1 and yu (b + 3a)/4) > ¢2. Since
s3 > myg and ||ys,|| < di(b = @)%, by Lemma 3.1.4 y5,((b + 3a)/4) > c1. And since
s5 > myq and ||y} < da(b — a)?, by Lemma 3.1.4 ys,((b + 3a)/4) > cz. Hence
Ysojur (b +3a)/4) > ¢; for j=1,2.

Next, we show that gm((b +a)/2) < do(b — a)? < ys,((b+a)/2) <
yss (b + 0)/2) < di(b — @)? < 3o, (b +@)/2) < s((b+a)/2) < dafb ~ @)’
Since y;,(a) = sz > s1, by the last line in Lemma 3.1.3 and by ys,(z) is non-
decreasing on [a, (b + a)/2], then we have 4, ((b+ a)/2) = [|ys,| > do(b - a)?.
Since ¥/}, (a) = s4 > 83, by the last line in Lemma 3.1.4 and the fact that ys, (z) is
non-decreasing on [a, (b+ a)/2), then we have y5,((6+a)/2) = |lys,l| > di(b—a)?.

Hence, we have

Us (b +6)/2) < do(b— a)® < s, ((b+0)/2),
Yss (b + 0)/2) < di(b - a)* < g, (b + 2)/2),
Yss((b+0)/2) < d2(b— a)”.

Therefore, we must show that s, ((0+a)/2) < ys,((b+a)/2) and s, ({(b+0a)/2) <
ys, (b + @)/2). Suppose that ys,((b+ a)/2) = ¥s,((b + @)/2), by Lemma 3.1.1

P (s (?,;_)) -7 (= (QZ—)) _ {(y;;a)f _ W (3:5-@))2}

_ {(y;(a))z (3, (b—;ﬁ)f}

[\~
[N}

but 0 < s < s3 such that (s2)2 — (s3)> < 0, so we have a contradiction. Therefore

Ysy (b + a)/2) < s, ((b + a)/2)-
Similarly, suppose that ys, ((b+a)/2) > ys;((b+a)/2). By Lemma 3.1.1,

we have

o (52) o (05) - [ - 802




but 0 < ss4 < 85 such that (s4)2 — (s5)? < 0 which is a contradiction, therefore
Ysi((b+a)/2) < yss((b+a)/2).
Finally, we will show that if f{a,0) > 0, then y;, () is strictly positive
n (a,b). Since y.(z) is non-increasing on [a, (b + a)/2], hence if f(a,0) > 0, then
Fla,ys(a)) = f(a,0) > 0 and y/(a) = —f(a,ys(a)) < 0. Thus y,(x) is strictly
decreasing at z = a and since yj(a) = 0, hence y(z} < 0 on (a, (b +a)/2]. Thus
Yo((b+a)/2) < 0. Let

§={s>0:y,((b+a)/2) =0}.

By Lemma 3.1.2(a) /. ((b+a)/2) > 0 if m > 4dp(b— a), thus S is bounded above.
Hence by continuous dependence of a solution on initial value m there exists
s € (0,4dg(b — a)] such that y((b + @)/2) = 0. Then § 5 0. Let s; = sup S.

Then by continuous dependence of a solution on initial value m, we get

Yo (b +2)/2) = 0.

Therefore y,,(z) is a solution of the BVP (3.1), (3.2). Since yg,{(a) = 53 > 0 and
ys, (@) = 0, then y,, (z) > 0 on (a, (b + a)/2]. By the symmetry about z = (b+a})/2
it is clear that ys,(z) is strictly positive on (a,b). Thus we proved the Theorem
3.2.1 (case k = 2).

3.3 Existence of Even Number of Solutibns

For even number of solutions of the BVP (1.3), (1.4) we guarantee the

existence of nonnegative symmetric solutions by the following theorem.

Theorem 3.3.1 In addition to the hypotheses for Theorem 8.2.1, also assume
f:[a,b] x [0,00) — [0,00) is continuous and

f(z,y)
y

Then the boundary value problem (1.8), (1.4) has at least 2k + 2 nonnegative

— 00 as Yy — oo

- symmetric solutions y1,Y2, . - -, Yok+2; the 2k + 1 solutions of Theorem 3.2.1 and

 one additional solution Yogro Satisfying Yoy.o(a) > Yhyy1(a)-
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Here, we illustrate the proof of Theorem 3.3.1 for the case k& = 2. Five
solutions of the BVP (1.3), (1.4) are guaranteed by the Theorem 3.2.1, we will
now find the sixth solution. Since ﬂxy—y) — 00 a5 ¥ — 00, then there exists @ > 0
such that f(z,y) > y if y > Q(b — a). Consider u < Q(b — a) gives

u ) Q(b—a)
/ f(fc,y)dy<f flz,y)dy
0 0

-Q{b—a)
< M* / dy

Jo
= M"Q(b - a)
_M
4 ?
-where
M*= sup f(z,y) and My =2y/M*Q(b~-a).
y€(0,Q(b—a)l
Hence there exists Mj such that
U MZ
u < Q(b—a) implies / flz,v)dy < Tf’
0.
or
u Mo
flz,y)dy > i implies « > Q(b — a). (3.7)
0

Let M = max {v2Q, M1}. Now we show that for m > M there exists 3(m) for
which y/.,(8(m)), where yy, is a solution of IVP(m). Suppose no such S(m) exists
such that y/ (8(m)) = 0, then y, (z) > 0 for > a. By Lemma 3.1.1

W(0))® (W) fwwﬂmw@

2 ' 2 Ym (D)
m? = —-———(yméb)) + /0 f(z,y)dy.




or

In case (2),

'ym(b) mz
> > >
/0 flz,y)dy > T2 2

'so {3.7) implies that y,,(5) > Q(b—a). Therefore, in either case, ym{b) > Q(b—a)

for m > M. Since y/,(x) > 0 for > a, then ynm(z) is increasing. Thus ym(z) >
ym(b) = Q(b — @) for z > b implies

fz,ym(z)) = ym(z) > Qb —a)

and hence
ym(z) = —f(z, ym(z)) < —Q(b - a).

Integrating with respect to x from a to x, we get

Ym(7) = ym(e) £ —Q(b - a)(z - a)
Ym(z) —m < —Q(b - a)(z - a),

so ! (z) <m—Q(b—a)(z — a) - —co as x — oo, contradicting with yy,(z) > 0
for z > a. Therefore, there exists S(m) such that y;,(8(m)) = 0.

Next, we will prove that
B(m) —>a as m—co.

Let € > 0 be given and choose & > 6%. Since @ — 00 as Y — 09, there exists

yx such that
f(=,9)
Y

2k i y2uyk



26 S B

By Lemma 3.1.1 we have (here, y means ym)

W@ Bm)’ [ D
0

2 y(B(m))
mT /0 flz, u)du,

so y(8(m)) — oo as m — co. Thus there exists N > 0 so that y(8(m)) > 2y

2 9 =

if m > N. Since y(z) < 0 on @ < z < B{m), then y(z) is concave func-
tion on a < # < B(m). Therefore, by Definition 2.8.2 with ¢ = ¢, d = 8(m),
A=1/2, and p = 1/2, we have

a+B(m)\ , ylB(m))
Y ( 5 ) > 5 (3.8)

Hence,

y(B(m))
2

y(z) > for

Then for m > N, we have y(z) > y(ﬁg’”” 2 Yk, SO

flz,y(w))
y(z) ~ 2

and hence, by (3.9), f(z,y(z)) = ky(z) > %y(ﬁ(m)) . Thus

V(&) = —H(z,y(@)) < —5y(B(m).

Integrating with respect to z from z to B{(m), we get

P

y'(B(m)) — (@) < —5y(B(m)[B(m) - =]

() 2 Sy(Bm)IB0m) - 2]

il

Integrating with respect to z from %@- to B(m), we get

’ 2
vtgm) -y (2 > Lyt L= A
wigm) 2y (2FE) 4 Fami(em) - 0. (310

Combining the inequalities (3.8) and (3.10), we get

y(pim)) > YT K o amy) (8(m) — a)?

> T T
YBIm) 5 £ y(am)(0m) - o)



Then,
(B(m) —a)® < -2— <& for m>N
or
|B(m) ~a| <e if m=N.
Thus
B(m) - a as m — oo.
Consequently there exists mg > ms so that S(me) < b‘"T“. Since -y;,, is non-

increasing and ., (8(mg)) = 0, then yy,, (b +a)/2) < 0. And since
yh (b +a)/2) > 0, then by continuous dependence of a solution on initial value

m there exists sg € (my, mg) such that

Yss((b+0)/2) = 0.

Therefore y,,(z) is the sixth solution of the BVP (1.3), (1.4). Since sg > ms > ss
and 4. (a) = se, ¥4, (a) = s5, then yi (@) > s, (a). Thus we proved the Theorem
3.3.1 for the case k = 2.

3.4 Example of Existence of Multiple Solutions

Example 1  Consider the nonlinear BVP
(@) + fle,y) =0, -1<z<1

when  f(z,y) = 2 + g(y — 8)%

(3.11)

Theorem 3.2.1 with @ = —1,b = 1 can be used to guarantee that the BVP
(3.11) has nonnegative symmetric solution but we must check that the nonlinear
function f(x,y) satisfies the hypotheses of the Theorem. It is easy to see that
f(z,y) is continuous and f(z,y) > 0 for all z,y € R. Let dp = 2. Since %%(y —8)?
is a concave upward parabola which has a value of 15 at ¥ = 0 and its vertex is
at (8,0), then f(x,y) < 8dg=16for -1 <z <1,0<y < 8and f(x,y) # 8dp for
—1<1<0,0< y <8 Therefore f(z,y) satisfies the hypotheses of the Theorem
- 3.2.1 (with a = ~1, b =1, k =0, dp = 2). By this theorem, it guarantees that
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the BVP (3.11) has at least one nonnegative symmetric solution. Moreover, we
see that f(z,y) satisfied the hypotheses of Theorem 3.3.1 (with & = 0}, when
f:[-1,1] x [0,00) — [0,00) is continuous and @ — 00 as y — oo. Hence
by this theorem, we guarantee that the BVP (3.11) has at least two nonnegative

syminetric solutions.

Now we also use numerical techniques to find the solution of the BVDP
(3.11) by the shooting method. The numerical solutions of the BVP (3.11) com-

puted by the computer program (See Appendix) gave two solutions:

e First solution; we used the initial guess equal to 0, the number of
subintervals N = 20. The computer program computed 9 iterations and gave the

solution which agrees with the tolerance 10~19. See Table 3.1 and Figure 3.1.

e Second solution: we used the initial guess equal to 30, the number of
subintervals N = 20. The computer program computed 10 iterations and gave the

solution which agrees with the tolerance 10719 See Table 3.2 and Figure 3.2.
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Table 3.1: First numerical solution of the BVP (3.11)

[

x(1)

y(x)

y'(x)

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

W e =] O v ol W N = O

T T R e T e T R A e et e
o W o =1 O Ot s W N = O

0.0000000000000G00
0.74446618771956 54
1.3568853860659056
1.8590519929121781
2.2676130229014019
2.5053087831662773
2.8518429396817270
3.0444955076214269
3.1785527088253476
3.2576021156628347
3.2837244770099335
3.2576017412496402

3.1785519337811193

3.04449427655751 32
2.8518411615676823
2.5953063200535598
2.2676096714584422
1.8590474545539198
1.3568792182146002
0.7444577227524444
-0.0000117929704186

8.1938896123390299
6.7431290715391982
5.5414511184825456
4.5295383884414781
3.6628556566256886
2.9071908450798168
2.2355976248904484
1.6262459671081751
1.0608667836032764
0.5235848805315594
-0.0000000000147681
-0.5235849359632309
-1.0608670104139699
-1.6262464976472477
-2.2355986218607045
-2.9071925209558204
-3.6628583026785206
-4.5295424204317951
-5.5414571515918209
-6.7431380478094479
-8.1939030253105505
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Table 3.2: Second numerical solution of the BVP (3.11)

i

x(i)

y(x)

y' (%)

0
1
2
3
4
5
6
7
3
9

10
11
12
13
14
15
16
17
18
19
20

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0000000000000000
3.7326746625046474
7.4091359853225039
11.07309984220170 35
14.7048221252360724
18.22280930761948 45
21.48977110504215 18
24.3271665863628789
96.54031450386255 78
27.9519519246286875
28.4374372998368664
27.95183415052136 12
26.5401107519550266
94.3269272440298793
21.4805473825207056
18.2226406608845775
14.7047329625130041
11,0731032606661878
7.4092399593334609
3.7328873444450589
0.0003329008697808

37.9165115652640932
36.9193748438277893
36.6824772141664247
36.5637814359823829
35.9344108715344949
34.1954029591430659
30.8443340569606466
25.5766061065010269
18.3885009409168754
9.6350808111660249
0.0000000000080665
-9.6350097066045095
-18.3882534264061800
-25.5761162288271762
-30.8436302872132383
-34,1945440336678978
-35.9334601658768878
-36.5627825484005668
-36.6814426567150764
-36.9182821950839497
-37.9153004002536809
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G raph of solution A

“8 7

Figure 3.1: First numerical solution of the BVP (3.11)

Figure 3.2: Second numerical solution of the BVP (3.11)
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Example 2 Consider the nonlinear BVP

y'(z) + f(z,y) =0, 0<z<1

(3.12)
y(0) =0, y(1) =0
. when
997 3191 66677

.2 _mb _ _ Pvr . 9Ys _ __opnd
Hey) =2+ 5maeisW =2 ~ 33575200 2 ~ 33868800 ~ 2

~ 148853( gy LATSTSST

1128960 7 4233600 7 '

Theorem 3.2.1 with ¢ = 0,5 =1 can be used to guarantee that the BVP
(3.12) has nonnegative symmetric solution but we must check that the nonlinear
function f(z,y) satisfies the hypotheses of the Theorem. It is easy to see that

f(z,y) is continuous for all z,y € R. Consider

227 3191

TN etk o nill o\
27095040 52579900 Y ~ 2
148853 14787587

N _ o3
TTagoe0 ¥ ~ 2"+ 4233600

__6ee6ry
33868800

(y — 2)°

y—2)% (y - 2)*

9(y) =

and its graph (Figure 3.3).

Figure 3.3: Graph of g(y)
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Let dyg = 2,¢1 =12, and d; = 30, then 0 < dp <1 < ‘é—% The graph of g(y} shown
that f(z,y) satisfied the hypotheses of Theorem 3.2.1 (with @ = 0,b = L,k =
1,dy = 2,c1 = 12,d; = 30), that is

f:10,1]x[0,d;] — [0,8d;] is continuous,
f(z,y) # 8d; on [0, 1/2] x [0,d;] forj=0,1

and

flz,y)<8dy for 0< <1, 0Ly <do

3
fz,y) > 161  for ngsl,clgyg%

flz,y) <8d; for 0<2<1,0<y<d.

Hence, by this theorem it guarantees that the BVP (3.12) has at least three non-
negative symmetric solutions. Moreover, we see that f(z,y) satisfied the hypothe-
ses of Theorem 3.3.1 (with k& = 1), hence by this theorem, it guarantees that the

BVP 3.12 has at least four nonnegative symmetric solutions.

Now we also use numerical techniques to find the solution of the BVP
(3.12) by the shooting method. The numerical solutions of the BVP (3.12) com-

puted by the same computer program used in Example 1 gave four solutions:

e First solution; we used the initial guess equal to 0, the number of
subintervals N = 20. The computer program computed 9 iterations and gave the

solution which agrees with the tolerance 10710, See Table 3.3 and Figure 3.4.

e Second solution; we used the initial guess equal to 20, the number of
subintervals N = 20. The computer program computed 8 iterations and gave the

“solution which agrees with the tolerance 10710, See Table 3.4 and Figure 3.5.

e Third solution; we used the initial guess equal to 70, the number of
subintervals N = 20. The computer program computed 16 iterations and gave the

solution which agrees with the tolerance 10710, See Table 3.5 and Figure 3.6.

e Fourth solution; we used the initial guess equal to 92, the number of



subintervals N = 20. The computer program computed 20 iterations and gave the

solution which agrees with the tolerance 10710, See Table 3.6 and Figure 3.7.

Table 3.3: First numerical solution of the BVP (3.12)

x(i)

" y(x)

y'(x)

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.0000000000000000
0.1804171813537289
0.3298394773277301
0.4532750503978927
0.5544924618709629
0.6363285305837084
0.7009025686136290
0.7497664512771232
0.7840093203550343
0.8043289977095700
0.8110777793475423
0.8042872375266436
0.7836743935743693
0.7486297429317500
0.6981858129381043
0.6300629280461581
0.5450863133712184
0.4380651227237220
0.3066187125367130
0.1464273043151483
-0.0482289910373764

3.9596163143885726
3.2792919580755563
2.7142267576573571
2.2357122128007289
1.8224086324876682
1.4580765389347280
1.1300428548932863
0.8281329822523630
0.5439018863240614
0.2700568786639476
-0.0000000000148605
-0.2725615300350985
-0.5539771551904443
-0.8510230065283991
-1.1713171963627460
-1.5238246227862801
-1.9195103163148153
-2.3722264437514528
-2.8999623489830750
-3.5266621777123780
-4,2849445233542976
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Table 3.4: Second numerical solution of the BVP (3.12)

iox(i) y(x) y' (%)

0 0.00 0.0000000000000000  23.0534241583715065
1 0.056 1.1401679966888393 22.6562320619280984
2 0.10 2.2716085600433971  22.6213970653774877
3 0.15 3.4005807762515446  22.4855682037600673
4 020 4.5117893734521522 21.8514737759736440
5 0.25 5.5722109326762490  20.4131538747729660
6 0.30 6.5366033050965797 17.9934387280360223
7 0.35 7.3546363837452189 14.5675812398743733
8 0.40 7.9784980048853267 10.2575161002460330
9 0.45 8.3694969185456680  5.2993427585959290

10 0.50 8.5026953594982496  -0.0000000000086268
11 055 8.3694403285430175 -5.3018108668591312
12 0.60 7.9781417114573551 -10.2672350831409436
13 0.65 7.3535089742021712 -14.5889027485536695
14 0.70 6.5340310301442479 -18.0301255570414196
15 0.75 5.5673452178238870 -20.4684896348792641
16 0.80 4.5036188480044519 -21.9287906431535535
17 0.85 3.3879051132606579 -22.5892711160692743
18 0.90 2.2529490221677306 -22.7585051074665657
19 0.95 1.1135862812007824 -22.8385612737623269

20 1.00

-0.0372179049769395

-23.3009249357420766




Table 3.5:
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Third numerical solution of the BVP (3.12)

i

x(i)

y(x)

¥ (x)

W o =~ G oov bl N = O

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.0000000000000000

3.6834322698622325

7.3280691608219056

10.7755865723967 543
13.8181610225647223
16.3155345820381524
18.2356606672366997
19.6233343077121003
20.5498285308909401
21.0785794195629738
21.2502481077481563
21.0785049716919877

20.54941725997556712

19.6220451383154801
18.2326563092525452
16.3097046490244860
13.8082500059789492
10.7604461513192919
7.3068636253577398
3.6654059200738877
-0.0364214856913980

73.7951528102731729
73.5894657482668082
71.6315883360008790
65.5436071512241385
55.6826751002012662
44.1168851978731227
32.8534173115936524
22.9021997992896931
14.3746709204378293
6.9133497365448877
0.0000000000849718
-6.9159311774462994
-14.3851977056242417
-22.9265278041151158
-32.8976487001175670
-44.1858103896611030
-55.7767768047350970
-65.6575069310302784
-71.7596081538684494
-73.7363972915171072
-73.9921369576122400
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Table 3.6: Fourth numerical solution of the BVP (3.12)

[

x(i)

y(x)

y'(x)

W o =~ & o s W o = O

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

PG Y T S SO U Sy T T e T o B o el e
S WO 00 ~1 O Ut W N o

0.0000000000000000
4.7583979156269380
0.4363663384360167
13.7906626915740554
17.6105650815883782
20.8894023200845919
23.8030446451737256
26.5739479162068307
29.2748825691403303
31.5402059613903927
32.4768509774475420
31.5282183924661581

29.2671797989037665

26.5753202714266651
23.8134403336095849
20.9085964452331216
17.6386808944853566
13.8270549152220159
9.4782852813199256
4.8014060770403993
0.0404180929923909

05.3011617740843861
04.9616211941741420
01.2661091843286499
82.1530453775351050
70.6322683199884437
61.1517175292952170
56.1913086418456092
54.9719325334906776
51.9423330402312398
35.6030901411083503
0.0000000000662947
-35.5102661875351842
-51.7614473148958590
-54.7867826251468857
-56.0153951575965097
-60.9733834553444104
-70.4544733517294481
-82.0073575645227538
-91.1973006679501217
-94.9832406598057274
-95.3725885499345888
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Figure 3.4: First numerical solution of the BVP (3.12)

Figure 3.5: Second numerical solution of the BVP (3.12)



39

L Graph of golution yix)
' T e A s ..

Figure 3.6: Third numerical solution of the BVP (3.12)

0T T g2 ‘o4 06 08

Figure 3.7: Fourth numerical solution of the BVP (3.12)



