CHAPTER 3
Main Result

3.1 The Dynamical Systems

As in introduction, we will study the following dynamical system
i=—ux+y(z+a)-bxz, y=—uy+x{z-a)-byz, Z=l-xy.
where x and yare the currents

4 and b are positive constants representing dissipative effects and b e(O,l)

o is a constant of the motion.

The equilibrium points of the system (1.1) are

El =(/BI’ /32: }’) and E: z(‘ﬁis —)Bza 7):

where f, :J(y+a)/(;l+b}’) ,
By =y —a) u+br)y,

pb it +at(1-0)
B -b%) '

We assume that y —& >0.The Jacobian of the linearized system about the first =
18
~u-by y+a  f-bp

J=| y-a -—u-by B-bB|.
_ﬁz —ﬁl 0
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The characteristic equation of the Jacobian J has the form

BacAd +ed+e =0,
that is ¢, =2by +2u >0,
6y = B+ B —2bB8, = (B, £ +2B,5,(1-0)> 0,
ey =2, By +ab(B} - B1)+ p(Bi + By ) =26, B (s +by)
=2y(1—b2)+jﬁi+ycz>0,

-2yb
and ¢¢,—¢ = ya<0,

Top+by

We see that ¢c, —¢; <0 is not satisfied the Routh-Hurwitz conditions, that is
the equilibrium points are not unstable. Consequently, we cannot conclude
anything about the behavior of the dynamical system (l.1) by means of
linearization. However, a numerical integration of these equations is quite
revealing. [t shows that the equilibria are actually unstable and that the orbits
encircle one of them a number of times before switching suddenly to encircle
the other equilibrium where it oscillates for awhile before again switching
rapidly back about the origin point. This orbits are never captured by either
equilibrium point, and the limiting behavior is apparently chaotic since the
number of oscillations in the neighborhood of each equilibrium point is
unpredictable. Fig. 1 shows a three-dimensional image of the chaotic trajectory

at £=0.75, a=1.80 and 5 =0.10.

Fig. 1. Three-dimensional image of the chaotic system (1.1) at x#=0.75,

& =1.80 and 5=0.10.




3.2 Controlling chaos to equilibriwm points

In this section, the chaos of the dynamical system (1.1) is controlled to
one of the two equilibra of the system. Two feedback methods are applied;

linear feedback and bounded feedback to achieve this goal.

3.2.1 Feedback control method

The linear feedback control is applied to system (1.1). Our goal is to
guide the chaotic trajectories of the system to one of the two unstable
equilibria (E,or E,). For the purpose of controlling chaos by feedback control
approach, let us assume that the equations of the controlled system are given

by

x=—px+y(z+a)-bxz+u,
y=—py+x(z—a)-byz+u, 2.1
z=l-xy+u,

where u,, u, and u; are external control inputs.

It will be suitably designed to drive the trajectory of the system, specified by
(x, vy, z) to any of the two equilibnum points of the uncontrolled (e, u =1,
=u,=0) system by only a single state variable feedback. For practical
applications, a simple feedback controller is more desirable so the control law

1s

u, k, 0 0 x-X
U, [==| 0 kn O [|¥y=¥|
Uy 0 0 k;jjz-%

where (%,7,7) is the desired unstable equilibrium of the chaotic system
(1.1), and k,, k,, and ki, positive fecdback gains, are needed to be chosen
such that the trajectory of the controlled system is stabilized to any of the

two equilibrium points of the uncontrolled system.




—p=by y+a [-bp
J=| y-a ~p-by B-bh |
-5 -5 —kss
where k,; =k, =0.

The characteristic equation of the Jacobian J has the form

At d e dte; =0,

that is ¢ = A+k;;,

¢, = B+ 2ky 4+ 2k;0y

c,=C,
where A=2by+2u,

B=f+p; —2bBfy,

C =2,y +ab(Bi = B+ u(B + B;) =26, fo(p+ 7).
Since 4, B, C>0, u,y,b>0 and k;; >0, hence ¢ >0,¢,>0 and ¢; >0.
iy s = Ak (i + 2y + 07 4 e [ (B = B + 25,5, (1-0) |

+2k5 (u+by) > 0.

We see that ¢, ¢, and ¢, are satisfied the Routh-Hurwitz conditions (i)
and (ii) of (2.3) and the asymptotic stability of El=(ﬁ1,ﬁz,y) of the

controlled system (2.4) is established.
3.2.1.2 Stabilizing the equilibrium £, =(~£,, - f.7)

In order to control chaos of system (1.1) to the unstable equilibrium
E,=(-5, - P ), linear feedback control is proposed to obtain the
controlled system

% =—pux+y(z+a)—bxz—k,(x+ b)),
y=-py+x(z—a)-byz—ky(y+ ), (2.5)
z=1-xy-ky(z-7).
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Theorem 2. The equilibrium point E,=(-8,-B,,7) of controlled system

(2.5) is asymptotically stable provide that k; =0, k, =0 and k;; > 0.

Proof. The Jacobian matrix of the linearized system of at the equilibrium is
given by

-u-by y+a -—p+bp i
J=| y—a -—pu-by -B+bp]|.
/32 ﬂ: ”k33

where £, =k, =0.

The charactenstic equation of the Jacobian J has the form

A v, Ate =0,
that is ¢, = A+k,;,
¢, = B2k pu+2k;by
¢, =C,

where A=2by+2u,
B=pl+p; —2bBp,,
C =28 Ly +ab(f = B;)+ u(Bi + By) - 2B, B, (1 +by).
Since 4, B,C>0, g4,7,6>0 and k,; >0, thus ¢,>0,¢, >0 U1a¥ ¢, >0.
Consider
0c, ~ ¢y = dkyy (2 + 2uby +6°77) + o [( B,-B,) +28, ﬁz(l—b)]
+2k5(u+by) > 0.

We see that ¢, ¢, and ¢, are satisfied the Routh-Hurwitz in equation

(2.3), hence E, =(~p,,— B,,7) of the controlled system (2.5) is asymptotic
stability.
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3.2.1.3 Numerical simulations

The chaotic and controlled systems of the ordinary differential
equations (1.1} and (2.1), respectively, are integrated by using fourth-order
Runge-Kutta method with time step size 0.01. The parameters a, u and b are
" taken a =1.8, z=0.75 and b=0.1 to ensure chaotic behavior in the absence
of the control. The initial conditions x=0.3, y=0.4 and z=0.5 are chosen in
all simulations. The gain matrix K is chosen to be k,; =0, k; =0 and k;; =0.2.
Fig. 2 shows the convergence of the trajectory of the controlled system (2.4) to
the equilibrium point of £ =(2.00578, 0.49854, 2.03704) of system (1.1} in
three-dimensional image. Fig. 3 shows in three-dimensional image the
stabilization of the equilibrium pointE, =(—2.00578, —0.49854, 2.03704), where
k,=0, ky, =0 and k;; =0.5.
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Fig. 2. Three-dimensional image of stabilizing the positive equilibrium
E, =(2.00578, 0.49854, 2.03704) of controlled system (2.2) by using linear
feedback at @ =18, #=0.75 b=0.1, k, =0, k,, =0 and k;; =0.2.

Fig. 3. Three-dimensional image of the stabilizing of equilibrium point
E, = (-2.00578, -0.49854, 2.03704) of controlled system (2.5), wherea=1.8 .
p=075,b6=01, k,=k;=0 and &k, =0.5.
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3.2.2 Bounded feedback control

The controlling chaotic systems of practical problems, we need bounded

control. In order to ensure small values of the control perturbations, the controller

u{t) 1s restricted in the following manner:

Uy, u(ty <u,
u(ty=3u(t), —u, <u(t)<u,,
Uy, 1, < ult)

where #, is a small saturating positive value of the control.

3.2.2.1 Stabilizing the equilibrium E, =(5,. £,,7)

In order to stabilize the unstable equilibrium £ =(ﬂ,,ﬁ2,y) by bounded

feedback control, the proposed control is designed for system (1.1) as follows:

x=—pux+y(z+a)—-bxz,
y=-puy+x(z—a)-byz, (2.6)

z=1-xy+u(t),
where u(f) = —k[bxz+y(z +a):|, k>0.

The controller u(f) tends to zero if the solutions converge to one of the

two unstable equilibria. The original and controlled systems have the same

equilibrium points £, and E, .




Theorem 3. The equilibdum solution E =(f, B,,7) of the controlled system

(2.6) is asymptotically stable if the constant k>0.

Proof. Let the controller u(t)=—k[bxz+ y(z+a)], k>0 be designed to the

chaotic system (1.1). The Jacobian matrix J of the linearized system of (2.6) at

E, =(161» ﬁz:)’) is

~u—by 7t+a B, —bp
J={ y-a —p—=by Bi-b5 . (2.7)
~B,—kby -p—k(y+a) —k(bA+p)

The characteristic equation of the Jacobian matrix (2.7) is

A4+ d+ie;=0.

That is ¢, =A+k(bf,+5,),
¢, = B+k(By + B+ 2,1 +0"yp, +2byf, +2ubf, - Bbar)
=B+k(By+ Ba+2/u +b27ﬁ1 +2ubf, +b5,(2y —a)),
¢y = C +k(1 B, + ppa+ ufy — 20" 1Pyor + 2byfiar +20°b, + 2uubyp,
+ ub* B, + 1170 B, - b By )
= C-i-k(;ﬁ‘ﬁ2 +pﬁ1y+2bya{ r(l_b2)+a(1+b2) ]+2ar2b/6’1
Ju+by (Jr +a +bJr—a)

Db+ 5y r(1-6)+a(1+0%) %8,
FLUOYPy + HOTYP T HO tu :
: l Jp+b}’(w/r+a+b\lr—a) l

where A=2by+2u,
B= ﬁ:z +ﬁ22 —2bp,f,,

C= 2ﬂ1ﬁ27+ab(ﬁ12 _ﬁzz)"‘#(ﬁxz + B3)—2b, By (u+by).
Since 4,B,C>0, u,y,b>0 and k>0. Hence ¢, >0,¢,>0 and ¢, >0.




24

06y —¢; = k(3482 B, + paf, + B, + SH'yuP, + 348 B + 46’y B,
+ b, (67 - )20, (u+by)’ +2b%7 B,
+ (kB +kB,) (B~ BoY +2BB,(1=b)) = K* (2ub B, 5,
+af, B, + DY By + 21f5; +b 5y (2y —a)+ yB S, +2ub B
+bafi? + 62 BB, (27 - @)+ By} + 2bup, By +byB )-

Since be(0,1) and ¥ >ar. Hence ¢, —¢;>0.

We see that ¢, ¢, and ¢, are satisfied conditions of Routh — Hurwitz. Hence

equilibrium E, = (ﬁl, By, y) of controlled system (2.6) is asymptotically stable.

3.2.2.2 Stabilizing the equilibrium E, =(-5,, - f.,7)

For stabilizing the unstable equilibiumE, ={-f,,— f,.7)of (l.1) by
bounded feedback control, the proposed control is designed for system (1.1} as

follows:

x=—ux+y(z+a)-bxz+u(t),

vy=—uy+x{(z—-a)-byz, (2.8)
z=1-xy,

where  u(t) =~k (ux—y(z+a)-bxz), k>0,

The controller u(f) converges to zero as chaos suppressed to the
equilibrium £,. In order to study the stability of the controlled system (2.8) in
the neighborhood of E2=(—ﬁl,— ,Bz,y), lineariztion about the equilibrium

E,=(-p,,—f,,7) sives the Jacobian matrix
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—p—by y+a —B, +bp,
J= y—-a —u-by -5 +bpB, | (2.9)
By—k(u-by) B +k(y+a) —k(B,+bp)

The characteristic equation of the Jacobian matrix (2.9) is
P4+eA® +ed+e,=0.

That is ¢, = A+k(bf, +5,),
¢, = B+k(yf, +uf, +b*yp, + 2byB, —ab B, + off, +3ub )
= B+k(yp, + up, +b27’ﬂi +b0, (2}’—“)+aﬁl +3ubp,),
¢; = C+kQub*yf, +2a°b B, + 2ubyf, + 2byBa + 21°b B, - 2b%yBycx)
= C+k[2ub’yf, +20°bf, +2ubyfs + 24705,
y(1-6%)+a(1+0)

\/Ju+b}f(\/y+o: +b\/y——z) ,

+2bya

where A=2by+2u,

B=f}+f; -2bB 5,

C=2p By +ab(Bl - B3)+ u(f + B;) =20 5,5, (¢ +by).
Since 4, B,C>0, ,7,6>0, y>a, be(0,1) and & >0. Hence ¢, >0, ¢, >0 and
¢, >0.
Consider

y(l—b2)+a(l+b2)

Jy+by (J}f +a +be—a)
+ 4 B+ 2uyB, + 24 B, +26° B, + 66 yup, +4B'y* B, )
+ (kB +kB)((B - Bo) +26,8, (1-) )+ (B, 8,0-5%)
+36%YB, B, + 1B, B, - baf; +3ub BB, + 2y} + iy +bafl + b’y
+by B} +346* B + buB )

e, =5 = k(206,11 +by)* +4ubyp, +2ua
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Since b &(0,1) and ¥ >a. Hence ¢, —¢; >0.

Applying Routh-Hurwitz theorem of classical stability theory, we get the
necessary and sufficient conditions(2.3) are satisfied and asymptotic stability for
the equilibdum point E, =(-f,—f,,7) is established and this completes the

proof of the following lemma.

Mk oo
A A

(2.8) is asymptotically stable for k>0.

3.2.2.3 Numerical simulations

Numerical experiments are carried out to integrate the controlled systems
(2.6)and (2.8). System (2.6) and (2.8) is numerically integrated by using fourth-
order Runge-Kutta method with time step 0.01. The parameters o, u# and b are
chosen o =1.8, #=0.75 and b=0.1 to ensurc the existence of chaos in the absence
of the control. The initial conditions x =0.3, y=0.4 and z = 0.5 are chosen in all
simulations. The equilibrium point E, =(8,, £, 7) =(2.00578, 0.49854, 2.03704) is
stabilized for & =0.1 and #,=0.5. Fig. 4(a)-(c) shows the behavior of the states
x,y and zof system(2.6) and the controller u(f) with time. The control is started
at t=100. The equilibrium point £, =(-5,,—f5,,7) =(-2.00578, —0.49854, 2.03704)
of system(2.8) is stabilized for k=0.1 and u, =0.5. Fig. 5(a)-(c) shows the behavior
of .the states x, y and z of system(2.8) and the controller u(f) with time. The control

1s activated at t= 100.
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Fig. 4. The states of the controlled system (2.6) and the control u(f) response
with time before and after control activation. (a) The response of the state x, (b)
the response of the state y, and (c) the response of the state z. The control is

activated at =100, ¢ =1.8, #=0.75,6=0.1 , k=0.1 and 4, =0.5.
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Fig. 5. The states of the controlled system (2.8) and the control u(f) response
with time before and after control activation. (a) The response of the state x, (b)
the response of the state y, and (c) the response of the state z. The control is

activated at t=100, ¢ =1.8, ©=0.75, 6=0.1, £k=0.1 and %, =0.5.
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3.3 Controlling chaos to limit cycles

The strange attractor of system (1.1) contains infinite number of umstable
periodic orbits (UPQOs) embedded within the attractor. Ip:. order to suppress the
chaotic behavior of system(l.1) to one of these UPOs, We apply two methods of
control in this section. The nonfeedback and a derived method based on the
delay feedback control are applied to system (1.1) to guide the chaotic trajectory

to a limit cycle.

3.3.1 Nonfeedback control method

The essential advantages of nonfeedback technique lie in their speed
flexibility, which are suited for practical applications. The nonfeedback methods
include weak periodic force use to controlling the chaotic behavior of system
(1.1). The proposed nonfeedback control of system (1.1) consists of a constant

and an extemal periodic force function in the form
u(t) = f+ f,cos{wr), (3.1)

where f] is aconstant bias,
/5 is the amplitude, and

@ is the frequency of the external periodic force signal.
The nonfeedback method with the controller (3.1) is applied in two cases.

Case 1. In this case, the controller (3.1} is added to the second equation

of(l.l). The controlled system has the following equations:




x=—ux+y(z+a)-bxz,
y=—uy+x(z-a)-byz+ f + f, cos(wt), (3:2)
z=1-xy.

Chaos is suppressed to a periodic solution within the chaotic attractor for certain

values of f;, f, and @.

Case 2. In this case, the controller(3.1) is added to the third equation of
(1.1). The resulting controlled system has the form
x=—pux+ yz+a) —bxz,

y=—py+x(z—a)-byz, (.
z=1=-xy+ f, + f, cos(wt).

()
(%)
—

Also chaos is suppressed to another periodic solution within the chaotic attractor

for certain values of £, f, and @.

3.3.1.1 Numerical simulations

In this parts, a number of numencal simulations is carmed out by using
fourth-order Runge-Kutta method with time step size 0.01. The initial conditions
are chosen in all these simulations to be x =03,y =04 and z = 0.5. The
parameters o, x and b are chosen ax=1.8, #=0.75 and b=0.1 so that system
(1.1) will exhibit chaotic behavior if no controls are applied.

Fig. 6 shows the projection of the chaotic attractor in x-y phase plane

Many numerical experiments are carried out to guide chaos to a periodic
solution around the positive equilibrium E,. The controlled system(3.2), for the
values f; =0.452, f,=1.499 and @ =2.712, chaos is suppressed to a limit cycle
as shown in Fig. 7(a). The orbits of the second controlled system (3.3), with the
same value f=0.452, f, =1.499 and @ =2.712 are converged to another limit

cycle that surrounds the two equilibria Fig. 7(b).
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Fig. 6. The chaotic attractor of system (1.1) in the x-y phase plane at a=1.8,

pu=0.75and b=0.1.
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Fig. 7. (a) The limit cycle of the controlled system (3.2) in x-y plane for the
value £, =0.452, f,=1.499 and @=2.712. (b) The limit cycle of the controlled
system (3.3), for the value f; =0.452, f, =1.499 and @ =2.712, is plotted in the

Xx-y plane.
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3.3.2 Delayed feedback confrol

The DFC is proposed by Pyragas [9] to control chaos in continuous
dynamical systems. The DFC method is based on a feedback of the difference
between the current state and the delayed state.ﬁ The delay time is set to
correspond to the desired period of the periodic orbit, therefore the feedback
vanishes after stabilizing UPQO. This method does not require finding UPO, but it
needs its period only.

The DFC method is applied to system (1.1) to stabilize a UPO of period
r. The controlled system is obtained by adding a delayed feedback term to (1.1)

as follows:
Xx=—ux+y(z+a)-bxz -k, [x(t)—x(t—r)],
y=—py+x(z-a)=bxy —ky [y} - y(t-71)], (4.1)
Z=1-xy—ky [z(r)—-z(t —T)].

where K is 3x3 feedback gain matrix, and

T 1§ dellay time which is the period of the target UPO.
‘The controller in system (4.1) converges to zero when the trajectories converge
to periodic orbit with period orbit with period 7. The controlled and uncontrolled

systems have the same fixed points £, E,.
3.3.2.1 Approximated delay feedback control method

QOur aim is to stabilize the chaotic system (1.1) to a limit cycle. Instead
of applying DFC method, we approximate the controlied system (4.1) by applying

Taylor theorem, for small 7 we have

x(t—7) = x(t)-x()+O(z?).




Hence, we get
x()-x(t-1) = ti(t) =7 [y(z+ @) - px—bxz],
W)= p(t-7) = tp(t) = 7[x(z~a) - py - byz],
zZ(t)—z(t-7) = rz2(t)=7(1 —xy).

H

This method can be applied for small value of rand the chaotic orbit
(x(2), ¥(1), z(t)) of (1.1) is very close to the periodic orbit with the period .

Thus, system(4.1) can be approximated by the following controlied system:

1l

(l—knr)[y(z+a)—yx-bxz],
(1= kyr)[x(z—a) — uy ~byz], (4.2)
i = (I-ksn)(1-xy)

n

The controlled system (4.2) has the same equilibrium points £, E,as of the

original system(l.1). The Jacobian matrix J of the linearized system (4.2) at
El z(ﬁp ﬂz’ }’) is
~dpu—dby dy+da df,—dbp
J=| ev—ea —eu—-eby ef —ebf, |,
_fﬁz "fﬂl 0

Let 1-k,t=d,1-kyr=e and |-k ;v= 1.

The characteristic equation of the Jacobian J/ has the form

A At+e, e =0,
where ¢, =ue+byd+bye+ ud,
f(eB+dB; —dbBB,—ebp )
= f(e(B - b)+d(B; b)),
¢, = f(—2udeb B, +eadb(ﬁ12 - ﬁ;)%—yed(ﬁf + /3 ) —2b*ydeB f3,
+edyB ;)
= f[edyB B, (1~ 26")+ ped ((B, - B,Y +25,B,(1-b))
+eadb( 7 - )].

&,
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Since 4, B, C>0, u, v, e, b>0 and e, d, f€(0,1), hence ¢, >0. The Routh-
Hurwitz in condition (i) of equation (2.3) are not satisfied that is ¢,, ¢; <0, for
some values of parameter. For example, if we let 5=0.7, a=1.8, £=0.75 and if
we choose k,=0.001, k,,=9.5, k=15 and r=0.1. We have ¢ >0 and
¢, ¢; <0, thus the controlled system (4.2) is not satisfied the Routh-Hurwitz.
Consequently, there are for some values of parameter which are satisfied the
Routh-Hurwitz in condition (i) of equation (2.3), that is ¢,, ¢;>0. The case of
ks kyy #0 and &y, =0 or ky, ki3 #0 and Kk, =0 or k,, k;; #0 and k; =0 or
ki, =k,=0 and k,, #0 or &, =4k;; =0 and k,, #0 have the similar results as in
the case k,, ky,, k;; #0, that is ¢, >0 and ¢,, ¢, <0 for some values of parameter.
Case k,; =k, =0 and k;; # 0 is a borderline stability case, we will show later. If
b =0, conditions (i) and (ii) of equation (2.3} are true for 0 <k, <1, O0<k,r <1
and 0 <k,r<l. If %0, we can choose b which is very small in the interval
(0,1) and can choose some point or some subinterval of 0 <k,r<1, 0<ky,r <l
and 0 <k,,7 <1 such that chaotic behavior suppresses to a limit cycle and ¢, c.,
¢, are satisfied the Routh-Hurwitz. For example, if we letb=0.1 and if we
choose k,, =k, =8.3, kyy =6.5 or k,=k;; =65, k;; =0 and 7=0.1, the chaotic
orbit converges to a limit cycle, see Fig. 9a). If we choose k, =k, =8.5,
ky=3.5 or k, =k, =8.1, k,=0 and r=0.1, then chaos suppresses to a limit
cycle, see Fig. 9(b).
Fix 5=0.01, choose &, ks, €[8,9], k;; €[0,3.5] and 7 =0.1, chaotic

behavior suppresses to a limit cycle which have the same Fig. 9(b).

In the remark, we show a borderline stability case:

Remark Let k,=k,=0 and 0<ky,7r <1, then the Jacobian matrnix J of the

linearized system of (4.2) at E, =(4,, B,,7) is




35

—u-by y+a p,-bp
J=| y—a -—p=by pi-bp |,
_fﬂz "fﬁl 0

where k,7=k,7=0 and let 1-k,r=1.

The characteristic equation of the Jacobian J has the form

3 2 -
A+ +cite; =0,

where ¢ =4

where A=2by+2u,
B=pB+pf) —2bB,p,,
C=25Byy +ab(f? - f2)+ u(f? + B1)~2h By (u+by).
Since 4,B,C>0, u#,7,b6>0 and f >0, hence ¢ >0,¢,>0 and ¢; >0.
Now, consider
acy—cs = f| u( Bl + B )~ 21 B By 2671, By + 207 ( B + B )~ 2B, oy
~ab(B-B7)]=0.

We see that the condition ¢,¢, —¢; =0 results in a borderline stability case. So, we
cannot conclude the system of (4.2) at L, =(ﬁ1,ﬁ2,y) is asymptotically stable.
However, we can show numerically that there exist some point of k,7, k,,7 and
ky;r in the interval (0,1) which suppress the chaotic system (1.1} to a limit cycle
in the next section. The same result is true at the equilibrium £,. We see in

Fig. 10(a) and 10(b).




3.3.2.2 Numerical simulations

The controlled system of ordinary differential equations (4.2) is integrated
by using fourth-order Runge-Kutta method with time step 0.01, & =138, 4=0.75
and b =0.1. The initial values are taken at x=0.3, y=04 andz=0.5. The time
delay 7 is chosen to be r=0.1. Fig. 9(a) shows the stabilization of the limit
cycle in the xy-phase plane when the gain matrix has the values &, =ky, =8.3,
by =6.5 or k, =ky =65, k=0 and r=0.1. Fig. 9(b) shows the stabilization of
the limit cycle in the xy-phase plane when the gain matrix has the values
ko, =k, =85, k=35 or k, =k, =8.1, k;; =0 and 7 =0.1. When the gain matrix
has the values k,, =k,, =0 and k;; =4.7, the chaotic orbit' converges to a periodic
orbit with three period, see Fig. 10(a). Fig. 10(b) shows the sﬁabilization of the
limit cycle in the xy-phase plane when the gain matnx has the values

by =k, =0, ky=65 and 7=0.1,
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Fig. 9(a) The limit cycle of the controlled system (4.2), for the wvalues
b, =k, =83, k;=6.5 or k, =k, =65, kj;=0and v=0.1 is plotted in the x-y
phase plane. (b) Periodic orbit is stabilized in the x-y phase plane of the
controlled system (4.2) at the valuesk,=ky,=8.5, k;=3.5 or &, =k, =8.1,
ky;; =0and 7=0.1.
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'Fig. 10.(a) The periodic trajectory of period three of the controlled system (4.2),
for the values k, =k,, =0, k;; =4.7 and v=0.1 is plotted in the x-y phase plane.

(b) Periodic orbit is stabilized in the x-y phase plane of the controlled system

(4.2) at the valuesk, =k,, =0, k;; =6.5 and 7 =0.1.




