CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some basic concepts and some methods which
will be used in our research.

2.1 The Logistic population model

Let N(t) denote the number of the population at time ¢. Consider N(f) as a
continucus function of t. We shall make the following basic assumptions:
Assumption (A): The derivative of N(t) is a continuous function of ¢ for all ¢ > 0.
(The derivative of N(t) describes the rate of change of the population.)
Assumption (B): The rate of change of the population N is of the form (b—sN)N
when b and s are positive constants.
Assumption (C): If o denotes the population at ¢ = 0, then b — s > 0.

The mathematical model resulting from Assumptions (A), (B), and (C)
for the population growth is the following initial value problem:

%‘{ —(b—sN)N, N(@)=a (0<t< o). (2.1)

The Eq.(2.1) is known as the logistic equation, and the corresponding graph of
this equation is called the logistic curve.



2.2 Integral equations

Integral equations are one of the most useful matﬁmnatical tools in both pure and
applied analysis. This is particularly true of problems in mechanical vibrations
and the related fields of engineering and mathematical physics, where they are not
only useful but indispensable even for numerical computation.

2.2.1 Volierra integral equations

Let K(z,y) be a complex valued continuous function defined on a domain
a £ x,y < b; f(z) be a complex valued continuous function defined on interval
6 < z < band A be an arbitrary complex number; then the following integral
eguations {

9) -2 [ K@nddy=1) (@<z<b) (22)
and

j: K(o)d)dy = f(z) (a<z<b). (2.3)

are called Volterra integral equation of the second and first kind, respectively, for
function ¢(z).

2.2.2 Fredholm integral equations

Let K(z,y) be a complex valued continuous function defined on a domain

a <z,y <b f(z) be a complex valued continuous function defined on interval
a <z < band A be an arbitrary complex number; then the general linear Fredholm
integral equation of the second kind for function ¢(z) is an equation of the type

o0~ [ Keddy=1)  @sa<h (2.4)
while the linear Fredholm integral equation of the first kind is given by

[ Kewswyiv=1@)  @sz<h) (25)



2.3 The Volterra model

Consider the Volterra model for population growth of a species within a closed

system

']
B e op— b —ep [ r@az w0 =m, (2.6)

where a > 0 is the birth rate coefficient,
b > 0 is the intraspecies competition coefficient,
¢ > 0 is the toxicity coefficient,
Pq is the initial population,
and p = p(f) denotes the population at time £,
The term cp [ pdz represents the effect of toxin accumulation on the species.
Several time scales and population scales may be employed (see, e.g., [2]).
However, we shall scale time and population by intﬁdut:ing the nondimensional
variables

=5 _P -
tmbfc’ u_afb (2.7)
to produce the nondimensional problem
d
A =u—yl—y f u(z)dz, 1(0) = uy, (2.8)
dt 0

where & = ¢/ab is a nondimensional parameter.

2.4 Series solutions of Volterra integral equations of
the second kind

Consider the nonhomogeneous Volterra integral equations of the second kind, with
variable limits of integration of the form

u(z) = f(z) + f K(z, du(t)dt, (2.9)

where K(z,t} is the kernel of_ the integral equation.



The strategy consists first of representing u(z) as a power series expansion

given by )
u(zx) = an:.-:"‘ (2.10)

k=0
Next, we use the Taylor series expansions for f(z) and K(z,t). Assuming that
the solution exists, it remains to formally determine the coefficients ar, k > 0.
To achieve this goal we insert (2.10) and the above mentioned Taylor expansions
into both sides of (2.9). With this substitution, the difficult integral in the right-
hand side of (2.9) will be transformed into a more readily solvable integral, which
can be solved more easily than the original. Integrate the result with classical
integral term by term and equating the coefficients of similar powers of z from
both sides lead to the complete determination of the coefficients ay, k > 0. Having
established these coefficients, the solution of (2.9) is readily obtained in a power

series form.

2.5 Direct solutions of Fredholm integral equations of
the second kind

Consider the nonhomogeneous Fredholm integral equations of the second kind,
those with fixed limits of integration, given by

u(z) = flz) + f K(z, t)u(t)dt, (2.11)
1]
where K(z,t) is the kernel of the integral equation. We may assume that kernel
K(z,t} is a separable kernel given by

K(z,t) = hiz)glt). (2.12)
Substituting (2.12) into (2.11) we get
u{z) = f(x) + hiz) f 3 g(t)u(t)dt. (2.13)

We can easily observe that the integral in (2.13) is a definite integral, hence it will

be reasonable to assume that

f 9(thu(t)dt = a, (2.14)



where ¢ is a constant. Clearly this assumption carries the Eq.(2.13) into
u(x) = f{zr) + ch(z). (2.13)
It remains to evaluate the constant & to establish the exaet solution. This can

be done easily by inserting w(z) of (2.15) into the integral of (2.14). With this
substitution, the unsolvable integral (2.14) will be transformed into

B .
a= [ sl (2 + ahlees (2.16)

a more readily solvable integral that formally determines a numerical value for
the constant «. Having established o, the exact solution u(z) follows immediately
upon substituting the value of & obtained from (2.16) into (2.15). This completes
the technique.

2.6 The decomposition method

The Adomian decomposition method enables the accurate and efficient analytic
solution of nonlinear ordinary or partial differential equations without the need
to resort to linearization or perturbation approaches. It unifies the treatment
of linear and nonlinear, ordinary or partial differential equations, or systems of
such equations, into a single basis method, which is applicable to both initial and
boundary-value problems.

2.6.1 Description of the technique
Consider the differential equation
Lu+ Ru+ Nu=g, (2.17)

where L is the highest order derivative which is assumed to be easily invertible, fiu
is a linear differential operator of order less than L, Nu represents the nonlinear
terms, and g is the source term. Applying the inverse operator L~ to both sides
of Eq.(2.17), and using the given conditions we obtain

u=f— L NRu) — L7 (Nu), (2.18)



where the function f represents the terms arising by integrating the source
term g and from using the given conditions, all are assumed to be prescribed.
The standard Adomian method defines the solution u(z) by the series

= tn (219)
n=0

where the components wuy, u;, ug, ... are usually determined recursively by:

ull:.f:

Uppn = —L Y Ru) — LY (Nug), k>0 (2.20)

It is important to note that the decomposition method suggests that the zeroth
component w usually defined by the function f described above. Having deter-
mined the components wug,uy, uy, ..., the solution u in a series form defined by
Eq.(2.19) follows immediately.

2.6.2 Algorithm for calculating Adomian polynomials for
nonlinear operators

The Adomian decomposition method decomposes the linear term u(z,t) into an
infinite sum of components u,(z,t) defined by

u(z, 1) = iun(m, t). (2.21)
n=(

Moreover, the decomposition method identifies the nonlinear term F(u(z,t)) by

the decomposition series
Flu(z,1) = ) A, (2.22)
n=({

where A, are the so-called Adomian polynomials.
To calculate Adomian polynomials, given a nonlinear operator F(u(z,t)), then



the first few polynomials are given by

Ap
A = wF'(u),

Ay = wF(uo) +5 HIF"['HIJ},

Az = uaF’(ug}-l-ulugF"{un]-l- “31;“(“0}1

A = uaFuo) + (il + wus) F"(u) + lulugmum WA (),

F {uﬂ] 1

(2.23)

Other polynomials can be generated in a similar manner.
In another way, we can calculate Adomian polynomials A, by using a new
algorithm. We will show just only case which is used in our research.
Case 1. Fu) =u?
We first set
U= (2.24)

Substituting (2. 24] into Fu) = «* gives
Fu) = {up +uy + up +ug +ug +ug +--- )% (2.25)
Expanding the expression at the right-hand side gives
Fu) = v} + 2ugu; + 2ugg + 4% + 2uguz + 2t ug + - . {2.26)

The expansion in (2.26) can be rearranged by grouping all terms with the sum
of the subscripts of the components of u, is the same. This means that we can
rewrite (2.26) as

Flu)= uf + Engu! + 2uguz + ui+?tsuu3 + 2uruy

Ug
et "y
An Ay Az Az

e Duigtig o 2ug g+ ug + 2ugts + s +2ugug + 0o (2.27)

Ag As
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This gives Adomian polynomials for F(u) = u* by

Ay
Ay
Az
A
Ay
As

Case 2. F(u) = ut,.
We first set

Uy

2

Uy,
2ugtia,
Quguz + ui,
Qugug + 2uy Uy,
Qugtg + Qs + 13,
2ugus + 2u; ug + 2uglis.
(2.28)

Yt (2.29)
n={

Substituting (2.29) into F(u) = uu, yields

F(u) = (g +uy +uz +us+ug+--) X (vo, +ur, +up, +ug, +ug, +---) (2:30)

Multiplying the two factors gives

F(ﬂ] = ugly, -+ Ug, Uy + Ugly, + Up Uz + U1, Uy + U Ug -+ Ug, Us

+ U Uz + Uz U+ U, U + Yo g + Uty + U Us

+ Uy, 4 Usllo, - . (2.31)

Collecting all terms with the same sum of subscripts of the components u, we can

rewritten Eq.(2.31) in the form

F(u) = ug ug+ ug, 1ty + tgtiy, + g, Uz + Uy, Uy + g, Ug

Ag

A1 Ag’

+ g, U3 + U, Up + Ug, Uy + Us, Ug

+ 1t Ug + Uglhy, + Uy, Uz + Urliz, + Ualip - . (2.32)

A

_—————— e R B ik o



Il
Consequently, the Adomian polynomials are given by

Ao = ug_up,

Ar = up g + wouy,,

Ay = o, up + uy_uy + ug, uo,

A3 = up, ug + U1, Uz + g, Uy + Uiz, Uo,

Ag = g g + Uglly, + Uy Uz + UyUs, + Ugtly,.

2.7 Padé approximation

Suppose that we are given a Power series ) i, ¢;z*, representing a function f(z),
so that -
flz) = qui. (2.33)
f=0

This expansion is the fundamental starting point of any analysis using Padé ap-
proximants. Throughout this work we reserve the notation ¢; = 0,1,2,--- for the
given set of coefficients, and f(z) is the associated function. A Padé approximant
is a rational fraction

Gg + 0T + - - + arz’

e e e

ag, # 0,by # 0 (2.34)

which has a Maclaurin expansion which agrees with (2.33) as far as possible. The
most useful of the Padé approximations are those with the degree of the numerator
equal to, or one more than the degree of the denominator, Notice that in (2.34)
there are L + 1 numerator coefficients and M + 1 denominator coefficients. There
is a more or less irrelevant common factor between them, and for definiteness we
take B = 1. This choice turns out to be an essential part of the precise definition,
and (2.34) is our conventional notation with this choice for by. So there are L + 1
independent numerator coefficients and M independent denominator coefficients,
making L+ M=1 tinkuown coefficients in all. This nuriber suggests that normally
the [L/M] ought to fit the power series (2.33) through the orders 1,z,22,..., MM
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in the notation of formal power series,

= ‘_ﬂﬁ+ﬂ1$+"'+ﬂLIL M41
gm‘_bﬂ+ﬁ1ﬂ:+"‘+bM$M+Q{IL+ )

Returning to (2.35) and cross-multiplying, we find that

(bﬂ+515+"'+ﬁuﬂ=“}(ﬂo+ﬂ11‘+---)=a.u+u1£+---+uL:cL+~--

Equating the coefficients of zf+1 2I+2, . ,xltM we find

byer-nrs1 + byr—1€p—paa2 + - +bocr1 =0,

bprer a2 + bae—rer—mas -+ bocLia =0,

buer, + by—rer4x + -~ +bocrem = 0.

(2.35)

(2.36)

(2.37)

If j < 0, we define ¢; = 0 for consistency. Since by = 1, Bgs.(2.37) become a set of

M linear equations for M unknown denominator coefficients:

CL-M+1 CL-M+2 CL-M+3 """~ €L bas CL+1
CL—M+2 CL-M+3 CL—M+4 ***  CL41 by CL+2
CL—M+43 CL—M+4 CL—M+5 """ CL42 by—a| = | cL+a
| €L CL-Af+1 €L m42 * " CLaM41] | b ] | CL+M |

from which the b; may be found. The numerator coefficients ag,ay,. ..

L

immediately from (2.36) by equating the coefficients 1, , .. .,3
ag = ¢y,
a = ¢ + heg,
ag = ¢z + by 4+ bacy,

min{L, M)

ap=cL+ Y bt
i=l1

(2.38)

yop follow

(2.39)

Thus (2.38) and (2.39) normally determine the Padé numerator and denominator
- and- ealled the Padé equations; we have constructed a [L/M] Padé approximant,

which agrees with 352, ¢;a* through order zi+M.



