TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	V
THA! ABSTRACT	9 viii
TABLE OF CONTENTS	xi
LIST OF TABLES	xiv
LIST OF FIGURES	xv
ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER I INTRODUCTION	1
1.1 Statement and significance of the problem	17
1.2 Literature review	3
1.2.1 Structure and function of hemoglobin	3
1.2.2 The human hemoglobin types	6
1.2.3 Genetic control and synthesis of hemoglobin	8
1.2.4 Globin gene clusters	10
1.2.5 Development changes in globin gene expression	12
1.2.6 The thalassemias	15
1.2.7 The molecular basis of α-thalassemia	E17 [1]
1.2.7.1 α-Thalassemia-1	17
1.2.7.2 α -Thaiassemia-2	n ₂₁ versity
1.2.7.3 Nondeletion α-thalassemia	[21 V e 0
1.2.8 Clinical manifestation	24

1.2.8.1 Silent carrier (α -thalassemia-2 trait)	24
1.2.8.2 α -thalassemia trait (α -thalassemia-1 trait)	25
1.2.8.3 Hb H disease	26
1.2.8.4 Hydrops fetalis with Hb Bart's	26
1.2.9 The polymerase chain reaction	28
1.2.9.1 General principles of PCR	28
1.2.9.2 Optimization of PCR	29
1.2.9.3 Selecting PCR primers	33
1.2.9.4 Computer-assisted design of oligonucletide	37
primers	
1.2.10 Multiplex PRC	37
1.2.11 DNA sequencing	38
1.2.11.1 The dideoxy method of DNA sequencing	38
1.2.11.2 Automated DNA sequencing with Dye-	40
terminator systems	
1.3 Objectives	42
CHAPTER II RESEARCH DESIGNS AND METHODS	43
2.1 Research designs	43
2.2 Methods	44
2.2.1 Chemicals and materials	44
2.2.2 Blood samples	44
2.2.3 Genomic DNA preparation	44
2.2.4 Standard polymerase chain reaction (PCR) systems	44
2.2.4.1 PCR-based diagnosis of the (SEA) deletion	44
2.2.4.2 PCR-based diagnosis of the (THAI) deletion	45 / (
2.2.4.3 PCR-based diagnosis of the (FIL) deletion	46
2.2.5 Multiplex PCR	47
2.2.6 Agarose gel electrophoresis	49

2.2.7	Confirmation of the deletion breakpoints of the (SEA),	50
	(^{THAI}), and (^{FIL}) α-thalassemia-1 deletions by DNA	
	sequencing	
	2.2.7.1 Asymmetric PCR cycle sequencing reaction	50
	2.2.7.2 Precipitating the extension product	50
	2.2.7.3 Automated DNA sequence analysis	51
CHAPTER III	RESULTS	52
3.1 Genomic I	DNA preparation	52
3.2 Polymeras	se chain reaction	52
3.2.1	PCR-based diagnosis of the (SEA) deletion	52
3.2.2	PCR-based diagnosis of the (THAI) deletion	52
3.2.3	PCR-based diagnosis of the (^{FIL}) deletion	53
3.2.4	Optimization of the multiplex PCR	53
3.2.5	Detection of α-thalassemia-1: (^{SEA}), (^{THAI}) and (^{FIL})	72
	deletion types in patients with Hb H disease by	
	multiplex PCR	
3.3 DNA sequ	uencing	73
3.3.1	Confirmation of the deletion breakpoints of (SEA) deletion	73
	by using DNA sequencing technique	
3.3.2	Confirmation of the deletion breakpoints of (THAI) deletion	73
	by using DNA sequencing technique	
3.3.3	Confirmation of the deletion breakpoints of (FIL) deletion	74
	by using DNA sequencing technique	
CHAPTER IV	DISCUSSION	
CHAPTER V	CONCLUSION Q	86 ∨ ((
REFERENCE	S	87
APPENDIX		97
CURRICULUM	// VITAE	102

LIST OF TABLES

Table		Page
1.	Normal human hemoglobins and their globin subunits	7
2.	Classes of mutations that cause α-thalassemia	
3.	Primer designs: properties of oligonucleotides that influence 35	
	the efficiency of amplification	
4.	Primer sequences for α -thalassemia-1 multiplex PCR and	48
	expected amplicon sizes	
5.	Reaction mixtures of multiplex PCR 47	
6.	Cycling conditions for multiplex PCR 49	
7.	The results from the detection of α -thalassemia-1 deletion in	72
	100 cases of Hb H disease by multiplex PCR	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	Page
1. Hemoglobin structure	4
2. Structure of heme group	4
3. Representation of the primary structure of the human $lpha$ - and	β- 5
globin chains	
4. The genetics control of human hemoglobin	9
5. The changes in hemoglobin composition pattern during gest	ation 14
and development	
6. The deletions of the $lpha$ -globin genes that result in $lpha$ -thalasse	mia-1 19
7. The deletions that underlie the $lpha$ -thalassemia-2	22
8. The mechanisms for the production of the common deletion f	forms 23
of α-thalassemia-2	
9. The genetics of α-thalassemia	27
10. Sequence of amplification in the PCR	30
11. The structure of dideoxynucleoside triphosphates (ddNTPs)	39
12. The ddNTP can be incorporated into the growing chain by [DNA 39
polymerase	
13. The output from the fluorescent sequencer is usually repres	ented 42
in a chromatogram format	
14. The location of primers for PCR to detect (SEA) deletion	ai IIn 45 ersity
15. The location of primers for PCR to detect (THAI) deletion	46
16. The location of primers for PCR to detect (FIL) deletion	S e ray e
17. Schematic representation of location of multiplex primers in	α- 48
alobin cluster	

18. Detection of $lpha$ -thalassemia-1 ($^{ extsf{SEA}}$) deletion by standard PCR	54
with the SEA primer set	
19. Detection of α -thalassemia-1 (THAI) deletion by standard PCR	55
with the THAI primer set	
20. Detection of $lpha$ -thalassemia-1 (^{FIL}) deletion by standard PCR with	56
the FIL primer set	
21. The effects of PCR program-A and program-B on the detection of	59
α-thalassemia-1 by multiplex PCR	
22. The optimization of the annealing temperature for detection of $lpha$ -	60
thalassemia-1 by multiplex PCR	
23. The optimization of the annealing time for detection of α -	61
thalassemia-1 by multiplex PCR	
24. The optimization of the extension temperature for detection of $lpha$ -	62
thalassemia-1 by multiplex PCR	
25. The optimization of the extension time for detection of α -	63
thalassemia-1 by multiplex PCR	
26. The optimization of the number of PCR cycles for detection of $lpha$ -	64
thalassemia-1 by multiplex PCR	
27. The optimization of the PCR buffer concentration for detection of	65
α-thalassemia-1 by multiplex PCR	
28. The optimization of the deoxynucleoside 5'-triphosphates	66
concentration for detection of $lpha$ -thalassemia-1 by	
O O multiplex PCR O V Chilang Mai Un	
29. The optimization of the magnesium chloride concentration for	67
detection of $lpha$ -thalassemia-1 by multiplex PCR	
30. The optimization of the volume of genomic DNA samples for	68
detection of $lpha$ -thalassemia-1 by multiplex PCR	

31. The optimization of the amount of <i>Taq</i> DNA polymerase for	
detection of $lpha$ -thalassemia-1 by multiplex PCR	
32. The effects of various adjuvants on the modified multiplex	70
PCR 09181916	
33. Multiplex PCR results for various $lpha$ -globin genotypes	71
34. Detection of $lpha$ -thalassemia-1 in genomic DNA samples by	75
multiplex PCR (sample number: H1-H10)	
35. Detection of α -thalassemia-1 in genomic DNA samples by	76
multiplex PCR (sample number: H41-H50)	
36. Detection of α -thalassemia-1 in genomic DNA samples by	77
multiplex PCR (sample number: H81-H90)	
37. Confirmation of the deletion breakpoints of (THAI) deletion by	78
using DNA sequencing technique	
38. Confirmation of the deletion breakpoints of (FIL) deletion by using	79
DNA sequencing technique	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

α alpha bp base pair β beta °C degree Celsius δ delta dNTPs deoxynucleoside triphosphates DNA deoxyribonucleic acid ddNTPs dideoxynucleoside triphosphates **DMSO** dimethyl sulfoxide epsilon ε **EtOH** ethanol **EDTA** Ethelene diamine tetra-acetate gamma γ gram hr hour Hydrochloric acid HCI kilobase kb litre Magnesium chloride microgram microlitre

micromolar

milligram

millilitre

millimolar

μΜ

mg

ml

mM

min	minute
M	molar
nm	nanometer
%	percent
PCR	polymerase chain reaction
Ψ	pseudo
rpm	revolution per minute
sec	second
Taq DNA polymerase	Thermus aquaticus DNA polymerase
θ	theta
Tris-HCI	Tris-hydroxymethyl aminomethane
	solution adjusted pH with HCI
UV	ultraviolet
U	unit
V	volt
ζ	zeta

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved