TABLE OF CONTENT

A along out a discourse of	Page
Acknowledgments	iii
Abstract (in English)	iv
(in Thai)	vi
Table of content	viii
List of tables	xi
List of illustrations	xii
CHAPTER 1 INTRODUCTION AND LITERATURE REVIEWS	1
1.1 Introduction	1
1.2 Types of Xylanases	3
1.2.1 Endo-β-1,4-xylanase	3
1.2.2 β-Xylosidase	3502
1.2.3 α-L arabinofuranosidase	3
1.2.4 α-Glucuronidase	4
1.2.5 Acetyl xylan esterase	4 6
1.2.6 Ferulic and ρ-coumeric acid esterase	4
1.3 Applications of Xylanolytic Enzymes	5
1.4 General Problems Associated with Microbial Xylanases	6
1.5 Properties of Cellulase-Free Xylanases in Application of	\
Pulp Bleaching Processes	14
1.6 Cellulase-Free Xylanase Production from Agricultural Waste	15
1.7 Optimization by Statistical Method	16
1.8 Objectives	2 16
CHAPTER 2 MATERIALS AND METHODS	
2.1 Media and Chemical Reagents	
2.2 Equipments	U ²⁰ versity
2.3 Media	e 22 v e d
2.4 Methods	23
2.4.1 Microorganism	23
2.4.2 Culture Media	23
2.4.3 inoculum Preparation	23
2.4.4 Experimental Design Setup	24

2.4.5	Engrana D. J. G.	Page
	Enzyme Production	25
_	Enzyme Activity Measurement	25
	Quadratic Model Analysis	26
·	est for the Accuracy and Precision of the Model	26
_	haracterization of Crude Xylanases from Streptomyces	
	O. Ab106.3.	27
	4.9.1 Temperature Profile	27
	4.9.2 pH Profile	27
	4.9.3 Stability of Xylanases	27
2.4	1.9.4 Effect of Bleaching Reagent on Xylanase Stability	27
2.4.10 Dr.	9.9.5 Enzyme Kinetic Studies	28
	ebleaching and Bleaching of Kraft Pulp	28
	.10.1 Biobleaching Pulp with Xylanases	28
	.10.2 Hydrogen Peroxide Bleaching of Enzyme	
2.4	Pretreated Pulp 10.3 Enzyme Bleaching of Live	29
2.4,		
CHAPTER 3 RESULTS AN	Pretreated Pulp	29
		30
3.2 Model Analysis	e Coefficients in Mathematical Model and Model Setup	30
	OH and Tomporature 6	31
3.4 Test for the Acci	OH and Temperature for Xylanase Production	32
3.5 Some Properties	of Xylanasos	33
		35
3.5.2 Therma	m Temperature and pH of Crude Xylanases I Stabilities of Crude Xylanases	35
3.5.3 Effect o	f Rleaching Description	
3.6 Enzyme Kinetics		o .
	Bleaching of Kraft Pulp	3 II versity
3.7.1 Bioblead	hing Pulp with Xylanases	8rved
3.7.2 Hydroge	n Peroxide Bleaching of Enzyma Dayler () 5	
3.7.3 Enzyme	Bleaching of Hydrogen Peroxide Pretreated Pulp 5	3
3.8 Conclusions		
3.9 Suggestions	59	Ð
	60)

REFERENCES
Page
61
75

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Tables		Page
1.	1 Characteristics of Xylanases from Fungi	
1.2	Characteristics of Xylanases from Bacteria	9
1.3	Characteristics of Xylanase from Actinomycetes and Yeast	10
1.4	Cellulase-free Xylanase Producers and Their Xylanase Properties	12
2.1	Maximum and Minimum Levels of Temperature and pH Used in the	13
	Central Composite Experimental Design	
2.2	The Central Composite Design for the Two Independent Variables,	24
	Factors 1 and 2	
3,1		24
	Least Squares Linear Regression Analysis for Xylanase Production (quadratic model)	
3.2	Comparison of Cellulase-Free Xylanase Production and Properties of	31
	Streptomyces sp.Ab106.3 to other Mesophilic and Thermophilic	
	Actinomycetes	
3.3		39
	Comparison of Xylanase Kinetic Constants of Streptomyces sp.Ab106.3 to other Actinomycete Xylanases	
3.4	Comparison of Xylanase Kinglia Canal	45
	Comparison of Xylanase Kinetic Constants of Streptomyces sp.Ab106.3 for Mixed-Inhibition to Non-inhibition	
3.5		46
	Summary of Some Properties of Xylanases Obtained form Streptomyces sp. Ab106.3	
3.6		59
	Summary of Kinetic Constants of Xylanases Obtained form <i>Streptomyces</i> sp. Ab106.3	
		60

ลิขสิทธิมหาวิทยาลัยเชียงเหม Copyright[©] by Chiang Mai University -All rights reserved

LIST OF ILLUSTRATIONS

Fi	gures	Page
1.	Lignin Associated Hemicellulose Fraction Removal from Pulp Structure	
	by Action of Cellulase-free Xylanase	
1.2		2
3.1	Xylanase Productions From Conditions Simulated by Central	17
	Composite Design.	
3.2		30
	Xylanase Production	
3.3		32
	(a) Xyalanase activity (IU/ml); (b) Total soluble protein (mg/ml)	
3.4	Optimum Temperature and put of Operation (mg/ml)	34
	Optimum Temperature and pH of Crude Xylanases Obtained from	
	Streptomyces sp. Ab106.3 (a) Temperature profile at pH 7 (b) pH profile at 60 °C	
3.5		36
	Stability Profiles of Xylanases under Various Temperature and pH Values. (a) $;55^{\circ}$ C, (b); 65° C and (c); 75° C	
3.6		38
	Stability Profiles of Xylanases Under Various Temperature and Hydrogen	
3.7	Peroxide Concentrations. (a); 45°C, (b); 55°C and (c); 65°C	41 .
٠.,	Stability Profiles of Xylanases Under Various Temperature and Sodium	
3.8	Hypochlorite Concentrations. (a); 45°C, (b); 55°C and (c); 65°C	42
0.0	Enzymatic Hydrolysis of Oat Spelt Xylan (1 – 20 g/l) with Constant	
3.9	Concentration of Xylanases (5 IU/ml), at 65 °C.	43
0.5	Lineweaver –Burk Plot of the Enzymatic Hydrolysis of 1 – 20 g/l	
3.10	Oat Spelt Xylan with Constant Concentration of Xylanase (5 IU/ml) at 65 °C	44
	Effect of Hydrogen Peroxide on Initial Rates of Xylanase Activity	47
3.11	Inhibition Kinetic analysis of Xylanase by Hydrogen Peroxide Using Soluble	
2.40	Oat Spelt Xylan as Substrate	47
3.12	Release of Reducing Sugar from Enzymatic Pretreatment of Kraft Pulp	
0.45	with Different Xylanase Doses at 55°C, pH 7.0.	50
3.13	Release of Lignin from Enzymatic Pretreatment of Kraft Pulp with	
	Different Xylanase Doses at 55°C, pH 7.0	51
		- •

Figures		Page
3.14	Effect of Various Xylanase Doses on the Kraft Pulp Brightness at	
	Sincretit incupation Times	
3.15	Effect of Hydrogen Peroxide Bleaching on Brightness of the	52
•	Presidented Kraft Pulp with Various Xylanase Doses	m.,
3.16	Release of Reducing Sugar from Enzymatic Treatment of Kroff D. I.	54
2.47	Aylanase Doses After Hydrogen Perovide Placetic	50
3.17	Rolease of Lighth from Enzymatic Treatment of Kraft Pulp with	56
3.18	Different Aylanase Doses After Hydrogen Peroxide Bleaching	57
3.10	A Name of Aylanase Doses on Brightness of the Pretreated Kroft Dut-	J.B.
	with Hydrogen Peroxide	58
	TAI THUIFRS!	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATION AND SYMBOLS

t_d

W