TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	x
LIST OF TABLES	xvi
LIST OF ILLUSTRATIONS	xix
ABBREVIATIONS AND SYMBOLS	xxii
CHAPTER 1: INTRODUCTION	1
1.1 Method Development and Automation of Analytical Chemistry	1
1.2 Flow Injection Analysis (FIA)	3
1.2.1 Basic Components of FIA	3
1.3 FI On-line Preconcentration Techniques	6
1.3.1 General Characteristic of FI Methods for Separation	7
and Preconcentration	
1.3.2 Evaluation of FI Separation and Preconcentration Systems	8
1.3.2.1 Enrichment Factor	8
1.3.2.2 Concentration Efficiency	9

	Page
1.4 FI Separation Preconcentration and Belonging Operations	9
1.4.1 Classification of FI Separation Preconcentration Techniques	9
1.4.2 FI Adsorption Preconcentration Using a Column	10
1.4.2.1 General	10
1.4.2.2 Practical Considerations in Operation of FI	11
Column Preconcentration	
1.4.3 FI Adsorption Preconcentration Using a Knotted Reactor	12
1.4.3.1 General	12
1.4.3.2 Practical Considerations in Operation of FI	13
Adsorption Using a Knotted Reactor	
1.5 Chromium	14
1.5.1 Sources and Occurrence of Chromium	14
1.5.2 Chemistry of Chromium in Fresh Water	16
1.5.3 The Essentiality of Chromium	18
1.5.4 Human Hazard Potential	18
1.5.5 Analytical Methods for the Determination and	19
Speciation of Cr	
1.6 Reasons for Undertaking This Work	23
1.7 Research Aims	23
CHAPTER 2: EXPERIMENTAL	25
2.1 Instruments and Apparatus	25
2.2 Chemical Reagents	25

	Pag
2.3 Preparation of Standard Solutions and Other Reagents	26
2.4 Procedures	31
2.4.1 A Comparison of Enrichment Factor of Knotted and	31
Serpentine Reactors Using Flow Injection Sorption and	
Preconcentration for the Off-line Determination of	
some Trace Elements by ICP-MS	
2.4.2 FI On-line Sorption and Preconcentration of Chromium(V	/I) 37
and Total Chromium Using a Knotted Reactor with	
Detection by FAAS	
2.4.2.1 Determination of Cr(VI) by FI-FAAS	37
2.4.2.2 Determination of total chromium by FI-FAAS	40
2.4.3 FI On-line Preconcentration of Low Levels of Cr(VI)	41
with ETAAS Detection	
CHAPTER 3: RESULTS AND DISCUSSION	48
3.1 A Comparison of Enrichment Factor of Knotted and Serpentine	48
Reactors Using Flow Injection Sorption and Preconcentration	
for the Off-line Determination of some Trace Elements by	
Inductively Coupled Plasma Mass Spectrometry	
3.1.1 Manifold Design and Operational Sequences	51
3.1.2 Optimization of Sample Acidity	51
3.1.3 Optimization of the Complexing Agent (APDC)	52
Concentration	

		Page
3.1.4	Optimization of Sample and the APDC Flow Rate	55
3.1.5	Optimization of the KR Length	55
3.1.6	Optimization of the Sample Loading Time	57
3.1.7	Rinsing the KR	58
3.1.8	Elution	59
3.1.9	Summary of the Optimum Conditions	60
3.1.10	Comparison of the Enrichment Factor of the FI Sorption and	60
	Preconcentration System on KR with that of Using SR	
3.2 Flame Ato	omic Absorption Spectrometric Determination of	62
Chromiun	n(VI) and Total Chromium in Water Samples by FI	
On-line Pr	reconcentration system Using Knotted Reactor	
3,2.1	Manifold Design and Operational Sequences	63
3.2.2	Optimization of the Condition Used for FAAS Instrument	63
3.2.3	Optimization of the Sample Acidity, [HCl], and APDC	66
	Concentration, [APDC]	
3.2.4	Optimization of the Sample and the APDC Flow Rate	69
3.2.5	Optimization of the KR Length	70
3.2.6	Optimization of the Sample Loading Time	72
3.2.7	Analyte Elution and Eluate Introduction	73
3.2.8	Summary of the Optimum Conditions	74
3.2.9	Oxidation of Cr(III) to Cr(VI)	75
3.2.10	Evaluation of Potential Interferences for Cr(VI)	82
3.2.11	Analytical Performance of the FI On-line Sorption	83

		Page
	Preconcentration of Cr(VI) on KR	
3.2.12	The Determination of Cr(VI) and Total Chromium in	89
	Different Water Samples	
3.3 FI On-line	e Preconcentration of Low Levels of Cr(VI) with Detection	92
by ETAA	S.	
3.3.1	Manifold Design and Operational Sequences	94
3.3.2	Optimization of the Graphite Furnace Temperature Program	96
3.3.3	Optimization of the Sample Acidity, [HCl], the	99
	Concentration of Complexing Agent, [APDC], and	
	the concentration of the Washing Solution, [WS]	
3.3.4	Optimization of the Sample and the APDC Flow Rates	100
3.3.5	Optimization of the KR Tubing Length	102
3.3.6	Optimization of the Sample Loading Time	103
3.3.7	Optimization of the Experimental Parameters of the	105
	Elution and the Ensuring Introduction into the ETAAS	
3.3.8	Comparative Preconcentration and Determination of	105
	Cr(VI) by On-line Sorption on KR and a Column	
	Reactor Packed with PTFE Beads	
3.3.9	Investigation of Interferences	114
3.3.10	Evaluation of the PTFE Beads Packed Column	114
	Preconcentration Procedure	

	Page
CHAPTER 4: CONCLUSIONS	117
4.1 A Comparison of Enrichment Factor of Knotted and Serpentine	118
Reactors Using Flow Injection Sorption and Preconcentration for	
the Off-line Determination of some Trace Elements by ICP-MS	
4.2 Flame Atomic Absorption Spectrometric Determination of	119
Chromium(VI) and Total chromium in Water Samples by FI	
On-line Preconcentration System Using Knotted Reactor	
4.3 FI On-line Preconcentration of Low Levels of Cr(VI) with Detection	120
by ETAAS	
REFERENCES	123
APPENDIX A	131
APPENDIX B	135
VITA	137

LIST OF TABLES

Table		Page
1.1	FIA chromium speciation studies in water samples using atomic	20
	spectrometric method	
2.1	List of chemical reagent	27
2.2	Operating parameters for the ICP-MS	32
2.3	Operating sequences of FI on-line preconcentration in	33
	PrepLab system	
2.4	Flow injection operation for on-line preconcentration and elution	38
•	of Cr(VI)	
2.5	Sequences of operations for the FI on-line sorption preconcentration	41
	elution procedures for very low levels of Cr(VI)	
2.6	Graphite furnace temperature program for the determination of Cr(VI)	47
	in the ethanolic eluate using pyrolytically coated graphite tubes	
	with platform	
3.1	Conditions used for determination	60
3.2	EF of the FI sorption and preconcentration system using KR and SR	61
3.3	Effect of burner height for observation on Cr(VI) determination	64
3.4	Effect of acetylene aspiration rate on Cr(VI) determination	65
3.5	Effect of acidity type on Cr(VI) determination	66
3.6	Effect of sample/APDC flow rate ratio on Cr(VI) determination	69 [.]
3.7	Effect of KR length on Cr(VI) determination	70

Table		Pag
3.8	Effect of sample loading time on Cr(VI) determination	72
3.9	Optimum conditions for Cr(VI) determination	75
3.10	Effect of concentration of H ₂ SO ₄ on Cr(III) oxidation	78
3.11	Effect of concentration of K ₂ S ₂ O ₈ on Cr(III) oxidation	80
3.12	Effect of oxidation time on Cr(III) oxidation	81
3.13	Relative oxidation yield of standard mixtures of Cr(III) and Cr(VI)	82
3.14	Effect of interference study for 0.05 mg/l Cr(VI)	84
3.15	Summary of the tolerance limit of the interferent effects on the	85
	determination of 0.05 mg/l Cr(VI)	
3.16	Relationship between peak height and concentration of Cr(VI)	85
3.17	Signal of reagent blank	87
3.18	Repeatability for Cr(VI) determination	88
3,19	Performance of the FI on-line sorption preconcentration of Cr(VI)	89
	for FAAS detection	
3.20	Analysis of reference materials	89
3.21	Determination of Cr(VI) and total Cr in various water samples	92
3.22	Effect of pyrolysis temperature on the determination of Cr(VI)-	97
	PDC complex	
3.23	Effect of atomization temperature on the determination of Cr(VI)-	98
	PDC complex	
3.24	Graphite furnace temperature program for the determination of Cr(VI)	99
	in the ethanolic using pyrolytically coated graphite tubes with the	
	platform	

Table		Page
3.25	Effect of sample and APDC flow rate ratio on the determination of	101
	Cr(VI)-PDC complex	
3.26	Effect of the KR length on the determination of Cr(VI)-PDC complex	102
3.27	Effect of sample loading time on the determination of Cr(VI)-PDC	104
	complex	
3.28	Relationship of Cr(VI) concentration and integrated absorbance on	106
	the preconcentration system using KR	
3.29	Relationship of Cr(VI) concentration and integrated absorbance on	107
	the preconcentration system using PTFE beads packed column	
3.30	Signal of reagent blank for detection limit calculation	109
3.31	Repeatability for Cr(VI) determination	109
3.32	Performance of the FI-ETAAS on-line sorption preconcentration	110
	systems incorporating a PTFE KR or a column reactor packed	
	with PTFE beads for the determinaiton of Cr(VI)	
3.33	Characteristic performance of the preconcentration system using a	112
	packed column for determination of Cr(VI)	
3.34	Investigation of the tolerance of potentially interfering ions when	115
	using the FI system incorporating the column reactor packed with	
	PTFE beads	
3,35	Determination of Cr(VI) in a SRM NIST-2109, SRM NIST-1640	116
	and a synthetic seawater sample, respectively, using the PTFE	
	beads packed column	

LIST OF ILLUSTRATIONS

Figur	e ·	Page
1.1	The basic components of an FIA system	4
1.2	Illustration of a knotted reactor (KR) and its secondary flow pattern	13
2.1	FI manifold and operational sequences for preconcentration	34
2.2	Configuration of reactor	36
2.3	FI manifold and operational sequences for the preconcentration,	39
÷	separation and determination of chromium	
2.4	Schematic diagram of the FI-manifold for sample preconcentration	42
	and elution	
3.1	Effect of sample acidity using a KR on the signal intensity of a 0.5 mg/l	52
	multi-elemental standard	
3.2	The structure formula of APDC	53
3.3	Effect of APDC concentration using a KR on the signal intensities	55
	of 0.5 mg/l multi-elemental standard	
3.4	Effect of KR length on the signal intensities of a 0.5 mg/l	56
	multi-elemental standard	
3.5	Effect of sample loading time using a KR on the signal intensities	57
	of 0.5 mg/l multi-elemental standard	
3.6	Effect of rinsing nitric acid concentration using a KR on the signal	59
	intensities of 0.5 mg/l multi-elemental standard	
3.7	Effect of burner height for observation on Cr(VI) determination	64

Figur	re ·	Page
3.8	Effect of acetylene aspiration rate on Cr(VI) determination	65
3.9	Effect of acidity type on Cr(VI) determination	67
3.10	The relationship of response signal and the vertex number for	68
	Optimization	
3.11	Effect of sample/APDC flow rate ratio on 0.10 mg/l Cr(VI)	69
	determination	
3.12	Effect of KR tubing length on 0.10 mg/l Cr(VI) determination	71
3.13	Effect of sample loading time on 0.10 mg/l Cr(VI) determination	73
3.14	(a) tris [pyrrolidine-1-dithioato-S-S']-Cr(III) (b) bis[-pyrrolidine-1-	76
	dithioato-S-S']-[pyrrolidine-1-peroxydithioato-O,S]-Cr(III)	
3.15	Effect of concentration of H ₂ SO ₄ on the oxidation of 0.10 mg/l Cr(III)	78
	with 0.05 M K ₂ S ₂ O ₈ at 80 °C for 30 min	
3.16	Effect of concentration of K ₂ S ₂ O ₈ on the oxidation of 0.10 mg/l Cr(III)	80
	in 0.005 M H ₂ SO ₄ at 80 °C for 30 min	
3.17	Effect of oxidation time on the oxidation of 0.10 mg/l Cr(III) in	81
	0.005 M H ₂ SO ₄ with 0.001 M K ₂ S ₂ O ₈ at 80 °C	
3.18	Relationship between peak height and concentration of Cr(VI)	86
3.19	The peak height obtained from the recorder	86
3.20	Calibration curve of Cr(VI)	87
3.21	Effect of pyrolysis temperature on the signal of Cr(VI)-PDC complex	97
	in ethanolic solution (atomization temperature was set at 2300 °C)	
3.22	Effect of atomization temperature on the signal of Cr(VI)-PDC complex	98
	in ethanolic solution (pyrolysis temperature was set at 1100 °C)	

Figur	Figure	
3.23	The relationship between the vertex numbers and response signals	100
	of Cr(VI)	
3.24	Effect of the sample and the APDC flow rate ratio on the	101
	preconcentration of 1.0 μg/l Cr(VI) in the KR (L _{KR} =125 cm) for a	
	preconcentration period of 60 s	
3.25	Effect of the length of the KR on the preconcentration of 1.0 μg/l	103
	Cr(VI) for a preconcentration time of 60 s	
3.26	Effect of sample loading time on the preconcentration of 1.0 μ g/l	104
	Cr(VI) in the KR of 125 cm	
3.27	Calibration curve of Cr(VI) for the FI on-line preconcentration system	107
	using knotted reactor	
3.28	Calibration curve of Cr(VI) for the FI on-line preconcentration system	108
	using PTFE beads packed column	

ABBREVIATIONS AND SYMBOLS

°C

degree celsius

et al.

and other people

EF

enrichment factor

ETAAS

electrothermal atomic absorption spectrometer

FAAS

flame atomic absorption spectrometer

FI

flow injection

ICP-MS

inductively coupled plasma mass spectrometer

KR

knotted reactor

mg

milligram

min

minute

ml

millilitre

mol

mole

ng

nanogram

ppb

part per billion

ppm

part per million

PTFE

polytetrafluoroethylene

%RSD

percent relative standard deviation

S

second

SD

standard deviation

SR

serpentine reactor

μg

microgram

μm

micrometre

μl

microlitre

v/v

volume by volume

w/v

weight by volume