
TABLE OF CONTENTS

		Page
1.5 Sp	peciation of heavy metals for soil and sediment studies	14
1	.5.1 Single extraction method	15
1	.5.2 Sequential extraction method	16
1.6 Se	election of sequential extraction scheme	23
1.7 Se	electivity and re-adsorption problems	28
1.8 A	ccuracy investigation	29
	.8.1 Accuracy of sequential extraction method	29
1	.8.2 Accuracy of hot-acid digestion	29
1.9 A	ims of the work	30
1.10 T	he relevancy of the research work to Thailand	30
CHAPTER 2.1	EXPERIMENTAL	
T,	struments and apparatus	31
	emicals and reagents	31
	ATTER	
2.3 Th	e preparation of chemical solutions	33
2.4 San	mpling and sample preparation	34
2.5 Op	timization of extraction parameters	36
adana	.5.1 Effect of ratio of extracting solution volume per sediment	KIJ
	.5.2 Effect of extraction times .5.3 Effect of repetitive extractions	³⁶ 40 4 1
2.6 Co	omparison between Tessier's and the optimized sequential	
e	xtraction methods	42
2.7 Ac	ccuracy of the optimized sequential extraction method	43

	Page
2.8 Accuracy of hot-acid digestion	43
2.9 Precision of the optimized sequential extraction method	43
2.10 Instrumental parameters	44
CHAPTER 3: RESULTS AND DISCUSSION	
3.1 Effect of ratio of extracting solution volume per sediment weight	45
3.2 Effect of extraction times	62
3.3 Effect of repetitive extractions	79
3.4 The optimization of sequential extraction method	101
3.4.1 Comparison between Tessier's and the optimized methods	101
3.4.2 Accuracy Investigation	
3.4.3.1 Accuracy of the optimized sequential extraction	116
3.4.3.2 Accuracy of hot-acid digestion	116
3.4.3 Precision of the optimized sequential extraction method	119
3.5 The optimized sequential extraction method for sample analysis	122
3.5.1 Metal analysis using the optimized sequential extraction	
method for sediment samples (Lot-I)	122
3.5.2 Metal analysis using the optimized sequential extraction	KU
Copyright method for sediment samples (Lot-II) at Unive	133 133
A CHAPTER 4: CONCLUSION TS TESETV	145
REFERENCES	149
APPENDIX	154
VITA	155

LIST OF TABLES

Table	ู กุมยนติ	Page
1.1	Metal levels in environments and human tissues	5
1.2	Some extracting solutions and conditions commonly used for	
	exchangeable fraction (F-I)	18
1.3	Some extracting solutions and conditions commonly used for	
-3	bound to carbonate fraction (F-II)	18
1.4	Some extracting solutions and conditions commonly used for bound	
	to Fe-Mn oxide fraction (F-III)	19
1.5	Some extracting solutions and conditions commonly used for	
	bound to organic matter fraction (F-IV)	19
1.6	Strong acid solutions and conditions commonly used for residual	
	fraction (F-V) and total metal contents	20
1.7	Extracting solutions used for sequential extraction schemes	
	modified from Tessier's method for the determination of heavy	
ลิสล์	metals in environmental samples	21
1.7	Extracting solutions used for sequential extraction schemes	
Copy	modified from Tessier's method for the determination of heavy	rsity
	metals in environmental samples (continued) CSCIV	e_{22}
2.1	The range of varied extracting solution volumes for study of the	
	effect of V/m ratios for sequential extraction method	37

Table		Page
2.2	The range of varied leaching times for study of the effect of	
	extraction times for sequential extraction method	40
2.3	Optimum extraction conditions for an individual extraction step of	
	sequential extraction method	41
2.4	Comparison of extraction conditions between Tessier's and the	
	optimized sequential extraction methods	42
2.5	Instrumental parameters of FAAS for the determination of heavy	
-30	metals extracted form sediment samples	44
3.1	Effect of V/m ratios on the extracted Mn concentrations from S2	
	and S5 (Lot-I) for F-I	48
3.2	Effect of V/m ratios on the extracted Zn concentrations from S2 and	
	S5 (Lot-I) for F-I	49
3.3	Effect of V/m ratios on the extracted Mn concentrations from S2	
	and S5 (Lot-I) for F-II	51
3.4	Effect of V/m ratios on the extracted Zn concentrations from S2 and	
	S5 (Lot-I) for F-II	52
3.5	Effect of V/m ratios on the extracted Mn concentrations from S2	
	and S5 (Lot-I) for F-III	54
3.6	Effect of V/m ratios on the extracted Zn concentrations from S2 and	rsity
	S5 (Lot-I) for F-III hts reserv	C 55 C
3.7	Effect of V/m ratios on the extracted Cu concentrations from S2 and	
	S5 (Lot-I) for F-III	56

Tabl	e	Page
3.8	Effect of V/m ratios on the extracted Mn concentrations from S2	
	and S5 (Lot-I) for F-IV	58
3.9	Effect of V/m ratios on the extracted Zn concentrations from S2 and	
	S5 (Lot-I) for F-IV	59
3.10	Effect of V/m ratios on the extracted Cu concentrations from S2 and	
	S5 (Lot-I) for F-IV	60
3.11	Effect of extraction times on the extracted Mn concentrations from	
2	S2 and S5 (Lot-I) for F-I	65
3.12	Effect of extraction times on the extracted Zn concentrations from	
	S2 and S5 (Lot-I) for F-I	66
3.13	Effect of extraction times on the extracted Mn concentrations from	
	S2 and S5 (Lot-I) for F-II	68
3.14	Effect of extraction times on the extracted Zn concentrations from	
	S2 and S5 (Lot-I) for F-II	69
3.15	Effect of extraction times on the extracted Mn concentrations from	
ລີຢສີ	S2 and S5 (Lot-I) for F-III	71
3.16	Effect of extraction times on the extracted Zn concentrations from	
	S2 and S5 (Lot-I) for F-III	72
3. 17	Effect of extraction times on the extracted Cu concentrations from	e d
	S2 and S5 (Lot-I) for F-III	73
0.10		

3.18 Effect of extraction times on the extracted Mn concentrations from

Table	e	Page
3.19	Effect of extraction times on the extracted Zn concentrations from	
	S2 and S5 (Lot-I) for F-IV	76
3.20	Effect of extraction times on the extracted Cu concentrations from	
	S2 and S5 (Lot-I) for F-IV	77
3.21	The extracted Mn concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-I	82
3.22	The extracted Mn concentrations for four successive extractions	0
	from S2 and S5 (Lot-II) for F-II	83
3.23	The extracted Mn concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-III	84
3.24	The extracted Mn concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-IV	85
3.25	The extracted Zn concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-I	86
3.26	The extracted Zn concentrations for four successive extractions	7 1
U	from S2 and S5 (Lot-II) for F-II	87
3.27	The extracted Zn concentrations for four successive extractions	ersil
	from S2 and S5 (Lot-II) for F-III	88
3.28	The extracted Zn concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-IV	89

75

S2 and S5 (Lot-I) for F-IV

3.29	The extracted Cu concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-III	90
Table	· 978181869 .	Page
3.30	The extracted Cu concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-IV	91
3.31	The extracted Cd concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-I	92
3.32	The extracted Cd concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-II	93
3.33	The extracted Pb concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-II	94
3.34	The extracted Pb concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-III	95
3.35	The extracted Pb concentrations for four successive extractions	
	from S2 and S5 (Lot-II) for F-IV	96
3.36	Comparison of the extracted Mn concentration for each extraction	
ລິສຂ	step by using Tessier's and the optimized sequential extraction	
	methods for S2 (Lot-I)	104
3.37	Comparison of the extracted Mn concentration for each extraction	rsity
	step by using Tessier's and the optimized sequential extraction	e d
	methods for S5 (Lot-I)	105

3.38 Comparison of the extracted Zn concentration for each extraction

step by using Tessier's and the optimized sequential extraction methods for S2 (Lot-I)

106

Page

107

108

110

Table

3.39 Comparison of the extracted Zn concentration for each extraction step by using Tessier's and the optimized sequential extraction methods for S5 (Lot-I)

3.40 Comparison of the extracted Cu concentration for each extraction step by using Tessier's and the optimized sequential extraction methods for S2 (Lot-I)

- 3.41 Comparison of the extracted Cu concentration for each extraction step by using Tessier's and the optimized sequential extraction methods for S5 (Lot-I)
- 3.42 Comparison of the extracted Cd concentration for each extraction step by using Tessier's and the optimized sequential extraction methods for S2 (Lot-I)
- 3.43 Comparison of the extracted Cd concentration for each extraction step by using Tessier's and the optimized sequential extraction methods for S5 (Lot-I)
- 3.44 Comparison of the extracted Pb concentration for each extraction
 step by using Tessier's and the optimized sequential extraction
 methods for S2 (Lot-I)

3.45 Comparison of the extracted Pb concentration for each extraction step by using Tessier's and the optimized sequential extraction methods for S5 (Lot-1)

2/02/02 Table Page 3.46 Comparison of the extracted concentrations and percentage distributions of Mn, Zn, Cu, Cd, and Cd for S2 (Lot-I) by using two 114 methods Comparison of the extracted concentrations and percentage 3.47 distributions of Mn, Zn, Cu, Cd, and Pb for S5 (Lot-I) by using two 115 methods Total concentration of Mn, Zn, Cu, Cd, and Pb obtained from hot-3.48 acid digestion for S2 and S5 (Lot-I) 117 3.49 Percentage recoveries obtained by comparing the sum of the extracted metal concentrations for the optimized sequential extraction method and hot-acid digestion 118 Percentage recoveries of Mn, Zn, Cu, Pb, Cd, and Cr obtained from 3.50 hot-acid digestion for S7 (Lot-I) after spiking method 118 Percentage recoveries of Mn, Zn, Cu, Pb, Cd, and Cr obtained from 3.51 119 hot-acid digestion for S8 (Lot-I) after spiking method 3.52 The results of the extracted Mn concentration obtained for study of the precision of sequential extraction for mixed sample (KN3+KN4) 120

113

3.53	The results of the extracted Zn concentration obtained for study of the	
	precision of sequential extraction for mixed sample (KN3+KN4)	120
3.54	The results of the extracted Cu concentration obtained for study of	
	the precision of sequential extraction for mixed sample (KN3+KN4)	121
3.55	The results of the extracted Cd concentration obtained for study of	
	the precision of sequential extraction for mixed sample (KN3+KN4)	121
Table		Page
3.56	The results of the extracted Pb concentration obtained for study of	
	the precision of sequential extraction for mixed sample (KN3+KN4)	122
3.57	Average concentrations of Mn distributed in each fraction of	
	sediments collected from different sample sites (Lot-I), which	
	extracted by the optimized sequential extraction method	127
3.58	Average concentrations of Zn distributed in each fraction of	
	sediments collected from different sample sites (Lot-I), which	
	extracted by the optimized sequential extraction method	128
3.59	Average concentrations of Cu distributed in each fraction of	
	sediments collected from different sample sites (Lot-I), which	
ลิขส์	extracted by the optimized sequential extraction method	129
3.60	Average concentrations of Pb distributed in each fraction of	
Copy	sediments collected from different sample sites (Lot-I) and extracted	ersity
	by the optimized sequential extraction method e See TV	130
3.61	Average concentrations of Cd distributed in each fraction of	
	sediments collected from different sample sites (Lot-I), which	

xviii

	extracted by the optimized sequential extraction method	131	
3.62	Average concentrations of Mn distributed in each fraction of		
	sediments collected from different sample sites (Lot-II), which		
	extracted by the optimized sequential extraction method	137	
3.63	Average concentrations of Zn distributed in each fraction of		
	sediments collected from different sample sites (Lot-II), which		
	extracted by the optimized sequential extraction method	138	
Table		Page	
3.64	Average concentrations of Cu distributed in each fraction of		
22	sediments collected from different sample sites (Lot-II), which		
	extracted by the optimized sequential extraction method	139	
3.65	Average concentrations of Pb distributed in each fraction of		
	sediments collected from different sample sites (Lot-II), which		
	extracted by the optimized sequential extraction method	140	
3.66	Average concentrations of Cd distributed in each fraction of		
	sediments collected from different sample sites (Lot-II), which		
	extracted by the optimized sequential extraction method	141	
ີສູນສິ	สิทธิ์มหาวิทยาลัยเชียง	ใหม่	
Copyright © by Chiang Mai University			
		e d	

xix

LIST OF ILLUSTRATIONS

267031

	Figur		Page
	1.1	The movement of trace elements with in the environment	13
	1.2	Schematic diagram of processes controlling the biogeochemical	
		cycling of heavy metals in aquatic environments	13
	2.1	Sampling sites of sediment samples collected from the Kwai Noi	
		River at Kanchanaburi Province	35
	2.2	The five-stage sequential extraction procedure employed for	
		sediment samples (modified from Tessier's method)	38
Со	3.1	Effects of V/m ratios on the extracted Mn (a) and Zn (b)	sitv
		concentrations from S2 (Lot-I) and S5 (Lot-I) for F-I	50
	3.2	Effects of V/m ratios on the extracted Mn (a) and Zn (b)	
		concentrations from S2 (Lot-I) and S5 (Lot-I) for F-II	53
	3.3	Effect of V/m ratios on the extracted Mn (a), Zn (b), and Cu (c)	

Ø 1

ามย

00

E

	concentrations from S2 (Lot-I) and S5 (Lot-I) for F-III	57
3.4	Effects of V/m ratios on the extracted Mn (a), Zn (b), and Cu (c)	
	concentrations from S2 (Lot-I) and S5 (Lot-I) for F-IV	61
3.5	Effects of extraction times on the extracted Mn (a) and Zn (b)	
	concentrations from S2 (Lot-I) and S5 (Lot-I) for F-I	67
3.6	Effects of extraction times on the extracted Mn (a) and Zn (b)	
	concentrations from S2 (Lot-I) and S5 (Lot-I) for F-II	70
Figur	e G	Page
3.7	Effects of extraction times on the extracted Mn (a), Zn (b), and Cu	
2	(c) concentrations from S2 (Lot-I) and S5 (Lot-I) for F-III	74
3.8	Effects of extraction times on the extracted Mn (a), Zn (b), and Cu	
	(c) concentrations from S2 (Lot-I) and S5 (Lot-I) for F-IV	78
3.9	Variations of the extracted Mn concentrations by four successive	
	extractions for F-I (a), F-II (b), F-III (c), and F-IV(d)	97
3.10	Variations of the extracted Zn concentrations by four successive	
	extractions for F-I (a), F-II (b), F-III (c), and F-IV(d)	98
3.11	Variations of the extracted Cu concentrations by four successive	
ลิสล์	extractions for F-III (a) and F-IV (b)	99
3.12	Variations of the extracted Cd concentrations by four successive	
Copy	extractions for F-I (a) and F-II (b)	99
A 3.13	Variations of the extracted Pb concentrations by four successive	e d
	extractions for F-II (a), F-III (b), and F-IV (c)	100
2 1 /	Paraantagas of Mn distribution in analy fraction from different	

3.14 Percentages of Mn distribution in each fraction from different

sediment samples (Lot-I)	132
3.15 Percentages of Zn distribution in each fraction from different	
sediment samples (Lot-I)	132
3.16 Percentages of Cu distribution in each fraction from different	
sediment samples (Lot-I)	133
3.17 Percentages of Pb distribution in each fraction from different	
sediment samples (Lot-I)	133
Figure	Page
3.18 Percentages of Cd distribution in each fraction from different	
sediment samples (Lot-I)	134
3.19 Percentages of Mn distribution in each fraction from different	
sediment samples (Lot-II)	142
3.20 Percentages of Zn distribution in each fraction from different	
sediment samples (Lot-II)	142
3.21 Percentages of Cu distribution in each fraction from different	
sediment samples (Lot-II)	143
3.22 Percentages of Pb distribution in each fraction from different	
sediment samples (Lot-II)	143
3.23 Percentages of Cd distribution in each fraction from different	ersity
sediment samples (Lot-II) STESEV	144

xxii

ABBREVIATIONS AND SYMBOLS

G		N K Z
E	Abs.	Absorbance
7	conc.	Concentration
	cm ³	Cubic centimetre
	°C	Degree Celsius
	CEC	Commission of the European Committee
	EU	European Union
ลิขสิท	FAAS	Flame atomic absorption spectrophotometer
Convrig	g C	by Chiang Mai University
Copy 5	h	Hour
	IAEA	International Atomic Energy Agency
	KN	Kwai Noi River
	L/min	Litre per minute
	LOD	Limits of detection

xxiii

	μg	Microgram
	mA	Milli Ampare
	mg/kg	Milligram per kilogram
	mg/L	Milligram per litre
	mL/g	Millilitre per gram
	mm	Milimatre
8	min	Minute
6	М	Mole/litre
AR A	nm	Nanometre
305	ND S	Not detected
	n	Number of extraction
Ĩ	%	Percentage
5	RSD	Relative standard deviation
	RT	Room temperature
	SD	Standard Deviation
	Temp.	Temperature
	U.S. EPA	United State Environmental Protection Agent
ລິບສິກ	U.S. PHS	United State Public Health Service
Conveig	v/v	Volume per volume Weight per volume
CODY 13	w/v	
	w/w	Weight per weight C S C T V C C
	WHO	World Health Organization