CONTENTS

		Page
TITLE PAG	E S	i
APPROVAL	SHEET	ii
ACKNOWL	EDGEMENTS	iii
ABSTRACT	(ENGLISH)	iv
ABSTRACT	(THAI)	vi
LIST OF TA	BLES	xiv
LIST OF FIG	GURES	xvi
ABBREVIA'	TIONS AND SYMBOLS	xix
CHAPTER	1: INTRODUCTION	
1.0	Rice	1
	1.1.1 Aromatic rice	2
	1.1.2 Aromatic rice of Thailand	3
	1.1.3 History of KDML 105	3
	1.1.4 Aroma	4
1.2	Introduction to headspace sampling	8
1.3	Introduction to headspace gas chromatography	9
1.4	Type of Headspace Sampling	11
1.5	Principles and instrumentation of static HS-GC	12
1.6	Theory of Headspace Analysis	16
1.7	Gas Chromatography	21

			Page
	1.7.1	Introduction to gas chromatography	21
	1.7.2	Principles of gas chromatography	22
		1.7.2.1 Some important terms in chromatography	23
		1.7.2.2 Column and stationary phase	27
	1.7.3	Instrument of gas chromatography	28
		1.7.3.1 Carrier gas and flow regulation	29
		1.7.3.2 Sample introduction	30
		1.7.3.3 Column and column oven	31
		1.7.3.4 Detector	32
1.8	Qualit	ative Analysis	36
1.9	Quant	itative Analysis	37
	1.9.1	Internal standard method	37
	1.9.2	External standard method	38
1.10	The so	cope and aims of this research	38
CHAPTER 2	: EXP	ERIMENTAL	
2.1	Appar	ratus and Chemicals	40
	2.1.1	Apparatus	40
	2.1.2	Chemicals	41
2.2	Prepa	ration of 1.0 M sodium hydroxide (NaOH)	41
2.3	Prepa	ration of 0.1 M Hydrochloric acid	42
2.4	Prepa	ration of the internal standard, 2,4,6-trimethylpyridine (TMF	')
	soulti	on	42

				Page
	2.4.1	Preparation	n of TMP 100 ppm solution	42
	2.4.2	Preparation	n of TMP 0.25 ppm solution	42
2.5	Prepar	ation of star	ndard solutions	42
	2.5.1	Preparatio	n of 2-AP stock solution (10 ppm)	42
	2.5.2	Preparatio	n of 2-AP stock solution (0.5-8.0 ppm)	43
2.6	Extrac	tion of 2-A	P in standard solutions by acidic solvent	43
2.7	Extrac	tion of 2-A	P in rice seed extract solution by acidic solvent	45
2.8	Identi	fication of 2	2-AP and internal standard (TMP) in rice seed	
	extrac	t		46
2.9	HS-G	C instrume	ntal conditions	46
2.10	Optin	nization		48
	2.10.1	Optimizat	tion of extraction conditions	48
		2.10.1.1	Extraction time	49
		2.10.1.2	Volume of 1.0 M NaOH added into the extract	
			solution	49
		2.10.1.3	Equilibrium time after 1.0 M NaOH was added	
			into rice seed extract	49
	2.10.	2 Optimiza	tion of automated headspace sampler parameters	49
		2.10.2.1	Optimization of temperature of vial, transfer lin	ne
			and sample loop	50
		2.10.2.2	Optimization of vial equilibration time	50
		2.10.2.3	Optimization of pressurizing time	50
		2.10.2.4	Optimization of loop filling time	51

			Page
	2.10.2.5	Optimization of loop equilibration time	51
	2.10.2.6	Optimization of injection time	51
2.11	Construction of c	calibration curve	52
2.12	Validation		52
	2.12.1 Detection	limit	52
	2.12.2 Linearity		53
	2.12.3 Precision		54
	2.12.4 Recovery	assay	54
	2.12.4.1	Preparation of standard solution for recovery	
		assay	54
	2.12.4.2	Preparation of rice sample for recovery	
		assay	54
2.13	Analysis of real	samples	55
CHAPTER	3: RESULTS AN	D DISCUSSION	
3.1	Identification of	f 2-AP and internal standard (TMP) on	
	chromatogram o	of the rice seed extract when was used for	
	optimization of	extraction method.	57
	3.1.1 Identific	cation of 2-AP and TMP in headspace of the rice	
	seed ext	tract when DB-1701 column was used	57
	3.1.2 Identific	cation of 2-AP and TMP in headspace of the rice	
	seed ex	stract when DB-17MS column was used	59

		Page
3.2	Optimization of extraction conditions	61
	3.2.1 Effect of extraction time	62
	3.2.2 Effect of volume of 1.0 M NaOH	64
	3.2.3 Effect of equilibrium time	66
3.3	Summary of optimized extraction conditions	68
3.4	Optimization of the automated headspace sampler conditions	69
	3.4.1 Effect of temperature of vial, loop and transfer line	69
	3.4.2 Effect of vial equilibration time	74
	3.4.3 Effect of pressurization time	76
	3.4.4 Effect of loop filling time	78
	3.4.5 Effect of loop equilibration time	80
	3.4.6 Effect of loop injection time	82
3.5	Summary of optimized automated headspace sampler condition	ns 84
3.6	Construction of Calibration Curves	86
3.7	Validation	87
	3.7.1 Detection limit	88
	3.7.2 Linearity	89
	3.7.3 Precision	90
	3.7.4 Recovery assay	91
	3.7.4.1 Recovery assay of standard extract solutions	91
	3.7.4.2 Recovery assay of rice extract solutions -	92
3.8	Analysis of Real Samples	93

	Page
CHAPTER 4: CONCLUSION	
REFERENCES	100
APPENDIX A	103
APPENDIX B	106
APPENDIX C	110
APPENDIX D	115
VITA	

LIST OF TABLES

		ъ.
Table		Page
2.1	Composition of the standard solutions	43
2.2	Conditions of automated headspace sampler	47
2.3	Conditions of GC	48
2.4	Information of rice samples	55
3.1	Retention times and peak areas of 2-AP and TMP at various extraction	
·	times	63
3.2	Retention times and peak areas of 2-AP and TMP at various volumes	
	of 1.0 M NaOH	65
3.3	Retention times and peak areas of 2-AP and TMP at various equilibrium	
	times	67
3.4	Optimized extraction conditions for extract 2-AP in rice seeds	68
3.5	Retention times and peak areas of 2-AP and TMP at various	
	temperatures	70
3.6	Retention time and peak areas of 2-AP and TMP at various vial	
	equilibration times	74
3.7	Retention times and peak areas of 2-AP and TMP at various	
	pressurization times	77
3.8	Retention times and peak areas of 2-AP and TMP at various loop	
	filling times	79
		1/

Table		Page
3.9	Retention times and peak areas of 2-AP and TMP at various	
	loop equilibrium times	81
3.10	Retention time and peak areas of 2-AP and TMP at various loop	
	injection times	83
3.11	Optimized automated headspace sampler conditions for analysis of	
	2-AP in rice seed extract	85
3.12	Peak area ratio of 2-AP to TMP of each standard solutions	87
3.13	The detection limit of 2-AP in rice analysis	88
3.14	Peak area ratio of 2-AP to TMP of each standard solutions 89	
3.15	Reproducibility of peak area ratio of 2-AP to TMP	91
3.16	Recovery assay of standard extract solutions	92
3.17	Recovery assay of rice extract solutions	93
3.18	Results of HS-GC determination of 2-AP in rice samples	96
C1	Calculation data of concentration on the linear regression equation	113
DI	Data for calculation of concentration of 2-AP	115
D2	Data for calculation of concentration of 2-AP in rice samples	116

LIST OF ILLUSTRATIONS

Figur	e	Page
1.1	Varieties of rice in the world	2
1.2	The structure of 2-acetyl-1-pyrroline	5
1.3	Illustration of headspace sampling techniques	11
1.4	Schematic of the 'pressure/loop' headspace sampling system	13
1.5	Schematic of the 'balanced pressure' headspace sampling system in	
	splitless configuration	14
1.6	Schematic diagram of HP 7694 Headspace Sampler	15
1.7	A headspace vial containing a liquid sample	17
1.8	Schematic of a gas chromatograph	28
1.9	Optimum linear velocity of carrier gas	29
1.10	Schematic diagram of HS-GC	30
1.11	Structure of DB-1701 liquid stationary phase	32
1.12	Structure of DB-17MS liquid stationary phase	32
1.13	Flame ionisation detector	33
2.1	Scheme for extraction of standard solutions	44
2.2	Scheme for extraction of rice seed	45
3.1	HS-GC chromatographic pattern of rice seed extract containing 2-AP	
	and TMP	57
3.2	HS-GC chromatogram of the nonspiked rice seed extract	58
3.3	HS-GC chromatogram of the spiked rice seed extract	59

Figure	e	Page
3.4	HS-GC chromatographic pattern of rice seed extract containing 2-AP	
	and TMP	60
3.5	HS-GC chromatogram of the nonspiked rice seed extract	61
3.6	HS-GC chromatogram of the spiked rice seed extract	61
3.7	Peak area of 2-AP and TMP and ratio of peak areas of 2-AP/TMP	
	obtained at various extraction times	63
3.8	Ratio of peak areas of 2-AP/TMP obtained at various volumes of	
	1.0 M NaOH	65
3.9	Ratio of peak areas of 2-AP/TMP obtained at various equilibrium	
	times	67
3.10	Ratio of peak areas of 2-AP/TMP obtained at various temperatures	70
3.11	Chromatogram of temperature of oven, loop and transfer line was	
	100,120,140 °C	72
3.12	Chromatogram of temperature of oven, loop and transfer line was	
	110,130,150 °C	73
3.13	Chromatogram of temperature of oven, loop and transfer line was	
	120,140,160 °C	73
3.14	Ratio of peak areas of 2-AP/TMP obtained at various equilibration times	75
3.15	Ratio of peak areas of 2-AP/TMP obtained at various pressurization times	77
3.16	Ratio of peak areas of 2-AP/TMP obtained at various loop filling times	79
3.17	Ratio of peak areas of 2-AP/TMP obtained at various loop equilibrium	
	times	81
3.18	Ratio of peak areas of 2-AP/TMP obtained at various loop injection times	83

xviii

Figure	e	Page
3.19	Chromatogram of rice extract obtained with HS-GC under optimum	
	conditions	85
3.20	Calibration curve of 2-AP	87
3.21	Calibration of 2-AP in the range 0.37 – 11.57 ppm.	90
3.22	Chromatogram of rice extract of KDML 105 Chiang mai	94
3.23	Chromatogram of rice extract of KDML 105 Tungkularonghai	94
3.24	Chromatogram of rice extract of Howm Supanburi	95
3.25	Chromatogram of rice extract of Howm Patumtani	95
A1	Scheme for synthesis of 2-AP	104
Δ2	Scheme of apparatus for hydrogenation reaction	105

ABBREVIATIONS AND SYMBOLS

peak area Α alumina Αl the concentration of A in a unit volume of the mobile phase A_{m} analytical reagent AR the concentration of A in a unit volume of the stationary phase A_s 2A 2-acetylpyrrole 2-acetyl-1-pyrroline 2-AP intercept a В butt connector slope of the straight line b \mathbf{C} concentration capillary column CC CG carrier gas the concentration of analyte in gas phase C_{G} the concentration of a component in mobile phase C_{M} C_{0} original concentration Conc. concentration the concentration of analyte in sample phase C_{S} the concentration of a component in stationary phase C'_{S}

D

DF

density

detection frequency

FID flame ionisation detector

GC gas chromatography

GC-O gas chromatography olfactometry

GLC gas-liquid chromatography

GSC gas-solid chromatography

g gram

H plate height

HAS headspace analysis

HETP height equivalent to a theoretical plate

HG headspace gas

HP high purity

HS headspace sample

HS-GC headspace gas chromatography

HV headspace vial

hr hour

I.D. internal diameter

K distribution constant

KDML Khao Dawk Mali

k' capacity factor

k_A the capacity factor for A

k_B the capacity factor for B

L column length

M molarity

MW molecular weight

m

meter

mg

milligram

min

minute

mm

millimeter

Ν

number of theoretical plate

N

noise

n

number of points on the calibration line

n

number of measurement

 P_{A}

peak area

ppm

part per million

PTFE

polytetrafluoroethylene

PLOT

porous layer open tubular

Rh

rhodium

Rs

resolution

RSD

relative standard deviation

S

signal

 S_{B}

blank signal standard deviation

SCOT

support-coated open tubular

SDE

steam distillation / solvent extraction

SHS-GC

static headspace gas chromatography

SHA/GC/MS static headspace analysis / gas chromatography / mass spectrometry

SN

sampling needle

SPME

solid phase microextraction

S

standard deviation

xxii

T temperature

TMP 2,4,6-trimethylpyridine

t_M hold-up time

t_R retention time

t'_R adjusted retention time

 t_{RA} retention time of component A

 t_{RB} retention time of component B

V volume

V solenoid valve

V_G volume of gas phase

V_M void volume

 V_{M} volume of mobile phase

Vo volume of original sample

V_R retention volume

V'_R adjusted retention volume

V_S volume of sample phase

V's volume of stationary phase

V_V total volume of vial

W_{BA} peak width at baseline of component A

W_{BB} peak width at baseline of component B

W_b peak width at baseline

WCOT wall coated open tubular

W_O the analyte in sample

wt weight

xxiii

X	mean measured value
x	normally are concentrations
Xi	individual measured value
у	instrument signals
Y_L	lowest detectable instrument signals
Y_B	blank signal
Y_i	response value from the instrument corresponding to the
	individual x – values
$\hat{\mathbf{Y}}_{\mathbf{i}}$	value of y on the calculated regression line corresponding to the
	individual x values
% R.S.D.	percent of relative standard deviation
%	percent
α	selectivity factor
β	phase ratio
°C	degree Celsius
hl 🧼	microliter
μm	micrometer