TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF ILLUSTRATIONS	xiv
ABBREVATIONS AND SYMBOLS	xvi
CHAPTER 1: INTRODUCTION	1
1.1 Iron	1
1.1.1 The importance of iron determination	1
1.1.2 Methods for iron determination	2
1.1.3 Needs for method development for iron determination	12
1.2 Phosphate	13
1.2.1 The importance of phosphate determination	13
1.2.2 Methods for phosphate determination	14
1.1.3 Need to develop method for phosphate determination	18
Copyright Aims of these studies Chiang Mai Univers	20
A CHAPTER 2: EXPERIMENTALS I C S C I V C	22
2.1 Chemicals	22
2.2 Preparation standard solutions and reagents	23
2.3 Instruments and apparatus	26

2.4 FIA set ups	27
2.4.1 FI system for determination of iron using salicylic acid	27
2.4.2 FI system for on-line preconcentration and electrochemical	
detection of phosphate	27
2.4.3 FI system for on-line sulfide removal for phosphate	
determination	28
2.4.4 FI system for simultaneous determination of phosphate and	
silicate using stopped FIA	29
2.5 Other set-ups	29
2.5.1 Capillary electrophoresis	29
2.5.2 Voltammetry	30
CHAPTER 3: RESULTS AND DISCUSSION	31
3.1 Determination of iron by FIA using salicylic acid	31
3.1.1 Preliminary studies	31
3.1.1.1 Absorption spectra of Fe(III)-salicylate complexes	31
3.1.1.2 Study of the molar absorptivity of Fe(III)-salicylate	
complexes	33
3.1.1.3 FIA system set up and study for conditions	35
3.1.2 Application of the developed method to pharmaceutical	
preparation samples and method validation	38
3.2 Determination of Fe(II) and Fe(III) by Capillary Electrophoresis	C
and Voltammetry	42
3.2.1 Capillary Electrophoresis	42

3.2.2 Voltammetric study for possibilities of speciation of	
Fe(II) and Fe(III)	47
3.3 Phosphate determination using flow injection analysis with	
electrochemical detection	51
3.3.1 Direct FIA system for phosphate determination	51
3.3.1.1 Study of the reproducibility of the signal	53
3.3.1.2 Interference study	54
3.3.1.3 Samples determination and method validation	56
3.3.2 Develop method for on-line preconcentration of phosphate	57
3.3.2.1 The system used and calibration data	58
3.3.2.2 The effect of chloride on phosphate adsorption	59
3.3.2.3 Samples determination and method validation	59
3.3.2.4 Single standard calibration	60
3.4 On-line sulfide removal for phosphate determination	62
3.4.1 Analytical wavelengths for the determination of phosphate	
by the molybdenum blue method with various reducing agents	63
3.4.2 Quantify sulfide interference using tin(II) chloride and	
ascorbic acid as reducing solutions	65
3.4.3 Test effectiveness of batch acidify to remove sulfide	69
3.4.4 On-line oxidation of sulfide using potassium	I Y
All ripermanganate S reserve	72
3.4.5 Test for organic phosphate	74
3.4.6 Method validation and sample determination	75

3.5 Simultaneous determination of phosphate and silicate using	
stopped FIA	78
3.5.1 Simultaneous determination of phosphate and silicate	80
3.5.2 Samples determination and method validation	82
CHAPTER 4: CONCLUSIONS	84
REFERENCES	87
APPENDIX	91
VITA	104
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND	107

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF TABLES

TABLE		Page
1.1 The example m	ethods for iron determination	6
1.2 Analytical meth	ods for determination of phosphate	15
3.1 Price compariso	on of chemicals for iron determination	34
3.2 The conditions	for Fe(III) determination using salicylate reagent	36
3.3 Determination	of iron in drug samples by the proposed FIA method	
and USP metho	d Sik	41
3.4 The conditions	for capillary electrophoresis	43
3.5 Conditions for a	letermination of phosphate using the FIA	
electrochemical	detection	53
3.6 Analysis of refe	rence fresh water and seawater	56
3.7 Analysis of sea	water sample	57
3.8 Recoveries of sp	pike dissolved reactive phosphorus to tap water samples	60
3.9 Percent change	of orthophosphate standards concentration range of	
50-1000 μg l ⁻¹ v	which contained sulfide of various concentrations	67
3.10 Percent change	of orthophosphate standards concentration range of	41
50-1000 μg l ⁻¹ v	which contained sulfide of various concentrations	68
3.11 Test of the effec	tiveness of batch pretreatment to remove sulfide using	SILY
0.01 M sulfuric	acid ts reserve	70
3.12 Test of the effec	tiveness of batch pretreatment to remove sulfide using	
0.05 M sulfuric	acid	71

3.13	On-line oxidation of sulfide using potassium permanganate	73
3.14	Samples determination using potassium permanganate method and	
	comparison of the results to the other methods	76
3.15	Recoveries of spiked dissolved reactive phosphorus to water samples	77
3.16	Conditions for simultaneous determination of phosphate and silicate	
	using the semi-automated stopped-FI-Analyzer	79
3.17	Determination of phosphate and silicate by the proposed stopped-FI	
6	method and the standard method	83

FRS

LIST OF ILLUSTRATIONS

FIGURE	page
2.1 FI manifold for determination of iron using salicylic acid	27
2.2 FIA manifolds for the direct determination of orthophosphate	28
2.3 FIA manifold for on-line sulfide removal for phosphate determination	29
2.4 Stopped-FIA manifold for simultaneous determination of phosphate	
and silicate	29
2.5 Capillary electrophoresis diagram	30
2.6 The voltammetric cell and electrode system	30
3.1 The absorption spectra of mixtures containing of Fe(III) and salicylate	31
3.2 Plots of absorbances vs Fe(III) concentrations in 0.1 M salicylate	33
3.3 FIAgrams for the determination of Fe(III) using salicylate	37
3.4 Calibration graph of Fe(III) determination using salicylate	37
3.5 Electropherograms obtained by an injection of a mixture solution	44
3.6 The structural formula of PAR	44
3.7 Distribution profile of major spicies of PAR	45
3.8 Voltammograms obtained by a serial mixture solutions	48
3.9 Voltammograms obtained by a serial mixture solutions	50
3.10 Reproducibility of phosphate peak height concentration of 50 and	sity
All 500 µg P I ¹ g hts reserve	54
3.11 FI gram and calibration graph of standard phosphate concentration	
0.1, 0.5, 1.0, 2.0, 5.0 and 10.0 μ g l ⁻¹	58
3.12 The effect of chloride on peak signal response of 5 μ g P l ⁻¹	59

3.13 Single standard calibration using 5.0 and 10.0 μ g P l ⁻¹	61
3.14 Absorption curves for molybdenum blue formed with various	
reducing agents	63
3.15 Absorption spectra obtained by using phosphate (1000 μ g P l ⁻¹)	
in the molybdenum blue method	64
3.16 Peak heights of signals obtained in a molybdenum method	65
3.17 The effect of sulfide on phosphate determination using tin(II) chloride	
as a reducing solution	67
3.18 The effect of sulfide on phosphate determination using ascorbic acid	
as a reducing solution	68
3.19 Acidification of sulfide in standard phosphate using 0.01 M sulfuric acid	70
3.20 Acidification of sulfide in standard phosphate using 0.05 M sulfuric acid	71
3.21 On-line oxidation of sulfide using potassium permanganate	73
3.22 Test of the oxidation potential of potassium permanganate on organic	
phosphates	75
3.23 Stopped-FI profiles of phosphate, silicate and mixture	79
3.24 Calibration graph of phosphate	80
3.25 The correlation between I_p and D_p	81
3.26 Calibration graph of silicate Copyright by Chiang Mai University	81
All rights reserve	