CONTENTS

	Page
ANE 26	
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	V
LIST OF TABLES	Х
LIST OF ILLUSTRATIONS	xiii
ABBREVIATIONS AND SYMBOLS	xvi
CHAPTER 1 INTRODUCTION	1
1.1 Flow Injection Analysis	1
1.1.1 Principle of FIA	1
1.1.2 Modes of FIA	3
1.1.3 Dispersion	4
1.1.4 FIA instrumentation	7
1.1.5 Application of FIA	10
1.2 Selenium	12
1.2.1 History	12
a la 1.2.2 Occurrence a substant la	-12
1.2.3 Preparation	12
CODY 1.2.4 Physical properties Children Mai Univers	12
1.2.5 Chemical properties	13
1.2.6 Distribution to environment	13
1.2.7 Deficiency signs	14
1.2.8 Effect of excess selenium	14
1.2.9 Therapeutic uses	16

1.2.10 Uses	17
1.2.11 Determination of selenium	18
1.3 Rhodamine B	23
1.4 Aims	24
CHAPTER 2 EXPERIMENTAL	25
2.1 Apparatus and Instruments	25
2.2 Chemicals	26
2.3 Preparation of Standard and Reagent Solutions	27
2.4 Sample Preparation	32
2.5 Instrumentation	32
2.6 Procedure	34
2.6.1 Preliminary study of absorption spectra	34
2.6.2 Optimization of analytical parameters in FI system	35
2.6.3 Analytical characteristics of the method	36
2.6.4 Application of FI system to water samples	37
2.6.5 Comparison with ICP method	38
CHAPTER 3 RESULTS AND DISCUSSION	39
3.1 Preliminary Study of Absorption Spectra	39
3.2 Optimization of the Flow System	40
3.2.1 Effect of wavelength S C C C C C C	41
3.2.2 Effect of HCl concentration	42
3.2.3 Effect of KI concentration	44
3.2.4 Effect of NaOAc concentration	46

3.2.5 Effect of PVA concentration	47
3.2.6 Effect of rhodamine B concentration	49
3.2.7 Effect of flow rate of sample solution	51
3.2.8 Effect of flow rate of HCl solution	53
3.2.9 Effect of flow rate of KI solution	56
3.2.10 Effect of size of tubing for mixing coil M1	58
3.2.11 Effect of length of tubing for mixing coil M1	60
3.2.12 Effect of size of test tube for mixing coil M1	63
3.2.13 Effect of type of mixing part M1	65
3.2.14 Effect of size of tubing for mixing coil M2	67
3.2.15 Effect of length of tubing for mixing coil M2	70
3.2.16 Effect of size of test tube for mixing coil M2	72
3.2.17 Effect of size of tubing for mixing coil M3	75
3.2.18 Effect of length of tubing for mixing coil M3	77
3.2.19 Effect of size of test tube for mixing coil M3	79
3.2.20 Effect of injection volume	82
3.2.21 Effect of irradiation time	84
3.3 Study of the Analytical Characteristics	86
3.3.1 Linearity	87
3.3.2 Precision	89
3.3.3 Detection limit	91
CODY 3.3.4 Calibration curve Chiang Mai Univers	92
3.3.5 Accuracy	95
3.3.6 Interferences	97
3.4 Application of the Proposed Method	104
3.4.1 Determination of selenite and selenate in water samples	104

	C
3.4.2 Comparative determination of selenite and selenate	105
in water samples	
3.4.3 Application of the proposed method to spiked water samples	106
CHAPTER 4 CONCLUSION AND SUGGESTION	107
FOR FURTHER WORK	
4.1 Conclusion	107
4.2 Suggestion for further work	109
REFERENCES	111
APPENDICES	115
APPENDIX A	115
APPENDIX B	118
APPENDIX C	122
APPENDIX D	124

All rights reserved

LIST OF TABLES

Table	Page
A918186	
1.1 Examples of applications of FIA in various fields	11
2.1 The studied ranges of analytical parameters	35
3.1 Fixed experimental parameters for study of optimum conditions	40
3.2 Effect of wavelength on peak height	41
3.3 Effect of HCl concentration on peak height	43
3.4 Effect of KI concentration on peak height	44
3.5 Effect of NaOAc concentration on peak height	46
3.6 Effect of PVA concentration on peak height	48
3.7 Effect of rhodamine B concentration on peak height	49
3.8 Effect of flow rate of sample on peak height	51
3.9 Analytical characteristics at various flow rates of sample	53
3.10 Effect of flow rate of HCl solution on peak height	54
3.11 Analytical characteristics at various flow rates of HCl solution	55
3.12 Effect of flow rate of KI on peak height	56
3.13 Analytical characteristics at various flow rates of KI	57
3.14 Effect of size of mixing tubing on peak height	58
3.15 Analytical characteristics at various sizes of mixing tubing	60
3.16 Effect of length of mixing tubing on peak height	61
3.17 Analytical characteristics at various lengths of mixing tubing	62
3.18 Effect of size of test tube on peak height	63
3.19 Analytical characteristics at various sizes of test tube	64
3.20 Effect of type of mixing part on peak height	65
3.21 Analytical characteristics at various types of mixing part	67
3.22 Effect of size of mixing tubing on peak height	68
3.23 Analytical characteristics at various sizes of mixing tubing	69

Table

3.24 Effect of length of mixing tubing on peak height	70
3.25 Analytical characteristics at various lengths of mixing tubing	72
3.26 Effect of size of test tube on peak height	73
3.27 Analytical characteristics at various sizes of test tube	74
3.28 Effect of sizes of mixing tubing on peak height	75
3.29 Analytical characteristics at various sizes of mixing tubing	76
3.30 Effect of length of mixing tubing on peak height	77
3.31 Analytical characteristics at various lengths of mixing tubing	79
3.32 Effect of size of test tube on peak height	80
3.33 Analytical characteristics at various sizes of test tube	81
3.34 Effect of injection volume on peak height	82
3.35 Analytical characteristics at various injection volumes	84
3.36 Effect of irradiation time on peak height	85
3.37 Experimental conditions for selenium determination	86
3.38 Study of linear range	87
3.39 Study of precision of the flow injection system	89
3.40 Study of precision of the proposed FI method	90
3.41 Peak height obtained for blank solution	91
3.42 Peak height obtained for low concentrations of selenite and selenate	92
3.43 Peak height for calibration curve	92
3.44 Peak height obtained by using standard addition method for Se(IV)	96
3.45 Peak height obtained by using standard addition method for Se(VI)	96
3.46 Effect of interfering ions for selenite	97
3.47 Effect of interfering ions for selenate	101
3.48 Determination of selenite and selenate in water samples	105
3.49 Comparative determination of Se(IV) and Se(VI) in water samples	105

using the proposed procedure	
1 Effect of three types of manifolds on peak	height
Standard of drinking water	62,

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

Page

Table

LIST OF ILLUSTRATIONS

Figure	Page
A181240	
1.1 The simplest FIA system	2
1.2 Effects of convection and diffusion on concentration profiles	4
of analyses at the detector	
1.3 Dispersed sample zone in flow system	5
1.4 Peristaltic pump	8
1.5 The microreactor geometries most frequently used in FIA	9
1.6 Chemical structure of rhodamine B	23
2.1 Three-line FI manifold used for determination of	33
Se(IV) and Se(VI).	
3.1 The absorption spectra of reagent and complex solutions	39
3.2 Relationship between peak height and various wavelengths	42
3.3 Effect of HCl concentration on peak height	43
3.4 Relationship between slope and HCl concentration	44
3.5 Effect of KI concentration on peak height	45
3.6 Relationship between slope and KI concentration	45
3.7 Effect of NaOAc concentration on peak height	46
3.8 Relationship between slope and NaOAc concentration	47
3.9 Effect of PVA concentration on peak height	48
3.10 Relationship between slope and PVA concentration	49
3.11 Effect of rhodamine B concentration on peak height	50
3.12 Relationship between slope and rhodamine B concentration	50
3.13 Effect of flow rate of sample on peak height	52
3.14 Relationship between slope and flow rate of sample	52
3.15 Relationship between t_{base} and flow rate of sample	53
3.16 Effect of flow rate of HCl on peak height	54

Figure

3.17 Relationship between slope and flow rate of HCl	55
3.18 Relationship between t _{base} and flow rate of HCl	55
3.19 Effect of flow rate of KI on peak height	56
3.20 Relationship between slope and flow rate of KI	57
3.21 Relationship between t _{base} and flow rate of KI	57
3.22 Effect of size of mixing tubing on peak height	59
3.23 Relationship between slope and size of mixing tubing	59
3.24 Relationship between t _{base} and size of mixingtubing	60
3.25 Effect of length of mixing tubing on peak height	61
3.26 Relationship between slope and length of mixing tubing	62
3.27 Relationship between t _{base} and length of mixing tubing	62
3.28 Effect of size of test tube on peak height	63
3.29 Relationship between slope and size of test tube	64
3.30 Relationship between t _{base} and size of test tube	64
3.31 Effect of type of mixing part on peak height	66
3.32 Relationship between slope and type of mixing part	66
3.33 Relationship between t_{base} and type of mixing part	67
3.34 Effect of size of mixing tubing on peak height	68
3.35 Relationship between slope and size of mixing tubing	69
3.36 Relationship between t _{base} and size of mixing tubing	69
3.37 Effect of length of mixing tubing on peak height	71
3.38 Relationship between slope and length of mixing tubing	SI 71/
3.39 Relationship between t _{base} and length of mixing tubing	72
3.40 Effect of size of test tube on peak height	73
3.41 Relationship between slope and size of test tube	74
3.42 Relationship between t_{base} and size of test tube	74
3.43 Effect of size of mixing tubing on peak height	75

Figure

3.44 Relationship between slope and size of mixing tubing	76
3.45 Relationship between t _{base} and size of mixing tubing	76
3.46 Effect of length of mixing tubing on peak height	78
3.47 Relationship between slope and length of mixing tubing	78
3.48 Relationship between t _{base} and length of mixing tubing	79
3.49 Effect of size of test tube on peak height	80
3.50 Relationship between slope and size of test tube	81
3.51 Relationship between t _{base} and size of test tube	81
3.52 Effect of injection volume on peak height	83
3.53 Relationship between slope and injection volume	83
3.54 Relationship between t _{base} and injection volume	84
3.55 Effect of irradiation time on peak height	85
3.56 Relationship between peak height and various concentrations	88
of selenite	
3.57 Relationship between peak height and various concentrations	88
of selenate	
3.58 Calibration signal of determination of selenite	93
3.59 Calibration signal of determination of selenate	93
3.60 The calibration curve of selenite determination	94
3.61 The calibration curve of selenite determination	94
A.1 Three types of the manifolds	116
Copyright © by Chiang Mai Univers	ity
All rights reserve	d