Chapter 2

Basic Concepts

The aim of this chapter is to give some definitions and properties of the gamma
functions, distributions, and partial differential equations which will be used in
the later chapters.

2.1 The Gamma Function

In this section, we shall present the definition of the gamma function given by
Euler. In addition, we shall give some properties of the gamma function.

Definition 2.1.1 (Euler) The gamma function is denoted by I' and is defined by

I(z) = /Ooo et*dt, (2.1)

where z is a complex number with Rez > 0.

A result that yields an immediate analytic continuation from the left haft
plane is the following properties.

Proposition 2.1.2 Let z be a complex number. Then

(1) T(z) = P(z;“ Y z0,-1,-2,..., 2.9)
2) T(z)T(1 - 2) = Si;rm, 2£0,—1,=2,...,2£0,41,22,....  (23)
Proof. (1) See [6, p63] and (2) see [6, p65)]. O

Proposition 2.1.3 (Legendre’s duplication formula) Let z be a compler number.
Then 1
['(z)F(z + 5) = 217%/r(22),z # 0,—-1,-2,.... (2.4)



Proof. See [6, p74]. O

Proposition 2.1.4 The residue of I'(A) at A = —k is

res T'(A) = (1"

7es k=012, (2.5)

Proof. See [4, p2]. O

2.2 Distributions

In this section, we shall use the standard notation D the space of testing func-
tions, which consists of all real or complex functions with continuous derivative
of all orders and with compact support. Every element in D is called a testing
function.

Definition 2.2.1 A sequence of testing function {p;(x)}2; is said to converge

to o(z) in D if all i(x) are zero outside a certain region in R" and if for
tive int th g1 Emattmn () 1 oo
every nonnegative integers my, Mz, ..., My, the sequence { BT TET T Gan il

3m1+ﬂ12+-"+mnw(m) n
dzy L 8zy 2.0z ™ on R*.

converges uniformly to

Proposition 2.2.2 D is closed under convergence, that is, the limit of every
sequence that converge in D is also in D.

Proof. See [1, p161]. O

Definition 2.2.3 A functional on a linear space E is ¢ mapping f : E — C
which assigns to each member @ of E a certain complex number; the image of
@ € E under f is usually written as f(p) or < f,po >. -

Definition 2.2.4 A distribution(or generalized function) is a mepping f : D — C
which satisfies the following conditions :

(1) for any ¢1,p2 € D and any scalars a., as,

< frapr + 0 >=a1 < f, 01 > +az < f,p2 >,

(2) for any sequence of testing functions {p;(z)}32, that converges in D to ¢,
the sequence {< f,p; >}, converges to < f,¢ > in the ordinary sense.
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One way to generate distributions is as follows. Let f(z) be a locally inte-
grable function, that is, a function that is integrable in the Lebesgue sense over
every compact subset of R®. Corresponding to f(x), we can define a distribution
through the convergence integral

<fo>= [ f(z)p(z) dz. (2:6)

Then by [5, p3], < f, ¢ > is a distribution.

Definition 2.2.5 Distributions that can be generated through (2.6) from locally
integrable functions shall be called regular, and all others will be called singular.

An important singular distribution is the so-called Dirac-delta function 8,
which is defined by
< 8, >= (0). (2.7)

Tt is to note that the Dirac-delta function is a singular distribution see [5, p4].

Proposition 2.2.6 Let z be an n-dimensional real variable andy an m-dimensional
real variable. Also, let ¢(z,y) be a testing function in D define over R**™. If
F(z) is a distribution defined over R", then 8(y) =< f(z), ¢(z,y) > is a testing
function of y in D.

Proof. See [13, p74]. 0

Proposition 2.2.7 Let f be any distribution (in one dimension), then the func-
tional g defined by
<gp>=<f,—¢' >

is also a distribution.
Proof. Sce [5, p19]. a

Definition 2.2.8 The distribution g in proposition 2.2.7 is called the derivative
of f and is denoted by f' or %, that s,
< flo>=<fi—¢ >. (2.8)

Similarly, in the case of several variable, the partial derivative of a distribution
f with respect to each of the variables can be defined as

of . e
<3—$i,<p>—<f, oz (2.9)

fori=1,...,n
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 Proposition 2.2.9 Given P is a hyper-surface, then P6®)(P) + kd*=D(P) =0
where 6%} is the Dirac-delta function with k derivatives.

Proof. See [5, p233]. O

Proposition 2.2.10 Let f be a distribution in m dimensions and g be a distri-
bution in n dimensions. Then the functional h defined by

< h(z,y), p(z,y) >=< f(z), < 9(y), p(z,y) >>
is a distribution in m + n dimensions.
Proof. See [5, p100]. O

Definition 2.2.11 The distribution h in proposition 2.2.10 is called the tensor
(or direct) product of f(z) and g(y) and is denoted by hiz,y) = f(z) x g(y),
that is,

< f(z) % g(v), oz, y) >=< f(z}, < 9(v), o(z,y) >> . (2.10)

Definition 2.2.12 The support of a distribution f is defined as the complement
of the largest open set on which f is zero.

Proposition 2.2.13 Let f and g be distributions in n dimensions. Then the
function h defined by '

< by >=< f(z) x gv), p(z +7) > (211)
is a distribution provided that it satisfies either of the following conditions :
(1) Either f or g has bounded support, or

(2) In one dimension the supports of both fandg are bounded on the same
side (for instance, f =0 for x < a, and =0 fory < b).

Proof. See [5, p104]. O

Definition 2.2.14 The distribution h in proposition 2.2.18 is called the convolu-
tion of f and g and is denoted by h = f * g, that is,

< frg0>=< f(z) x g(u), oz +y) > . (2.12)
Now we shall give some helpful properties of convolutions.

Proposition 2.2.15 Let f,g and h be distributions.
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(1) For ¢§ is the Dirac-delta function, we have
fxd=1. (2.13)

(2) If f and g satisfy at least one of the (1) and (2) of proposition 2.2.13,
then

frg=gxf. - (214)

| (3) If P(D) is linear partial differential operator with constant coefficients and
f and g satisfy at least one of the (1) and (2) of proposition 2.2.18, then

P(D)f xg=P(D)(f xg) = f = P(D)g. (2.15)
Proof. (1) and (2) see [5, pl04].

(3) see {13, p49]. O

2.3 Introduction to Partial Differential Equations

A partial differential equation is an equation containing a partial derivative
which is to be taken of an unknown function of more than one variable. A
partial differential is called linear if it can be written in the form

It Ay (p, .., T
R A s S ST

my1+...tma <m

where summation is taken over all nonnegative integers my, ..., m,, the a’s and
f are given functions, u is an unknown function, and / is a nonnegative integer.
A partial differential equation is called nonlinear if it is not linear.

Now we shall give some examples of partial differential equations.

Example 2.3.1 The wave equation in n dimensions for u = u(x1,...,Tn, 1) is
uy = A, (2.16)

where ¢ is a positive constant and A\ is defined by (1.3).

It represents vibration of springs or propagation of sound wave in tube for
n = 1, wave on the surface of shallow water for n = 2, and a acoustic or light
waves for n = 3.

Example 2.3.2 FElastic waves are described classically by the linear system

Bzu,-
o = kAU + (A +p)

0
Bz, (Vu) (2.17)



8

(i=1,2,3,... ), where the u; (1, 2, T3, t) are the components of the displacement
vector u, and p is the density and X, p the Lame constants of the elastic material.
Each u; satisfies the fourth-order equation

8 A+2u 0* p B

formed from to different wave operators.

Proposition 2.3.3 Let ¢ > 0. Given the equation

Dou(z) = f (=, u(z), (2.19)
where
1 & B

= — =3t
2 2 2
¢ = oz; j=p+l Oz;

A,

and f defined and having continuous first derivatives for all z € QU o), where
Q is an open subset of R™ and 8Q denotes the boundary of Q. Assume that f
is bounded on Q ,that is, there exists an N > 0 such that |f (z,u(z))| £ N for
all £ € 2. Then we obtain a continuous function u(z) as o unique solution of
(2.19) with the boundary condition u(z) =0 for z € 6Q2.

Proof. See[2, p369]. O
Definition 2.8.4 Consider the linear partial differential equation
P(D)u= f, (2.20)

where f is a distribution, u an unknown function, and P(D) o linear partial
differential operator with constant coefficients. A function E(x) is called ele-
mentary solution of equation (2.20) if P(D)E = 6, where § is the Dirac-delta
function.

Definition 2.3.5 Let z = (Z1, T3, ..., Ta) be a point of R*. We shall write z7 +
T34 BT — T — — 2, =U, where p-+q = n. By I'y we designate
the interior of the forward cone : {x € R™: z; > 0 and U > 0}, and by T,
designates of its closure. Similarly, T'_ designates the domain {reR':z; <
0 and U > 0} and T_ designates of its closure.

Let F()\) be a function of the scalar variable ), and let ®(z) be o function
endowed with the following properties :

(1) &) = FU),

(2) supp®(z) C T4,
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(3) e<*¥>®(x) € Ly if y € V., where

Vo={yeR:y>0,y7+vi+.. . +¥2 -y — Yoo — - =~ Yory > O}

- We call R the family of functions ®(x) which satisfies condition (1)-(8).
Similarly, we call A the family of functions which satisfies the following
conditions :

(1) B(z) = F(U),
(2) supp®(z) CT-,

(3) e<*¥>®(x) € Ly if y € V,., where
Vi={yeR:yu<Oyl+ys+.. . t2 -2y —Yip—. . — Ui, >0}

We shall consider the following functions of the family R introduced by Y.
Nozaki [9, p72] :

A
Ri(z) = { K@ roEle (2.21)
0 forz ¢ T'y.

where « is a complex parameter, n is the dimension of the space, the constant
K, (a) is defined by

TSP (1520 o)

Kp(a) = — - (2.22)
i P(Z572)D(232)
and p is the number of positive terms of
U=zi+ad+..+ai—2i, —22p— .. —2h, ptg=n (2.23)

It is well known that R¥(z) is an ordinary function if Rea > n and it is a
distribution of & if Re < n. Let supp R¥(z) denote the support of RZ (z). By
putting p = 1 in (2.21) and (2.22) and by (2.4), then (2.21) reduces to

55T
My(s) = 4 @ forzely, (2.24)
0 forz ¢ T,
Here s =z2 — 22 — ... — z% and
Hy(o) = r" P2 m(2 =) D),

M,(s) is precisely, the hyperbolic kernel of Marcel Riesz.
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Definition 2.3.6 Let z = (21, %2, ..., Zn) be a point in R" and the function Rg (x)
defined by

B—n
@) = 2.25
where f is a complex parameter, |z| = (22 + 25 + ...+ 22)z and
73287 (%)
WalB) = — g (2.26)
i (%)

Definition 2.3.7 Let a and f be complez parameters and £ = (z1, T2, vy Zn) €
R". The family K, p, the kernel of Marcel Riesz, is defined by

K, p(z) = R () * R(z), (2.27)

where RE(z) and R5(z) are defined by (2.21) and (2.25) respectively. In the
special case o = B = 2k, the kernel Koy o 18 called the Diamond kernel of Marcel
Riesz.

Proposition 2.3.8 Given the egquation

C*u(z) = 0, (2.28)
where OF is the ultra-hyperbolic operator iterated k-times defined by
g 2 o e\
DF= s+t~ — e — 2.2
(ami ot et T B, a:cg+q) ! (2.29)

(m)
where £ = (21,T2,---,Tn) € R". Then we obtain u(z) = (Rg{k_l)(x)) as @
solution of (2.28) with m = (n —4)/2 , n > 4 and n 1s even. The function

(m)
(R.ZI’Ek_l) (a:)) is defined by (2.21) with m derivatives and o = 2(k — 1).

Proof. See [7, Lemma 2.3]. O
Proposition 2.3.9 Given the equation

Otu(z) = f(z), (2.30)
where OF 4s the Diamond operator iterated k-times defined by (1.1), f(z) is
o distribution, w(z) s an unknown distribution end z = (21,%2,...,%.) € R”

the n-dimensional Buclidean space and n is even, then (2.80) has the gemeral
solution

w(z) = (~1) R () * (RE,_1y(2)™ + (=1 Kot 24(3) * £ (2)

(m)
where (Rg{k_l) (.’z:)) ™ s a function with m derivatives defined by (2.21) and
Kopor(z) is defined by (2.27) with o = p = 2k.
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Proof. See [7, Theorem 3.1]. 0O

Let us note that in the proof of Proposition 2.3.9, u(z) = {—1)*Kakax(z) *
f(=) is a particular solution of the equation (2.30).

Proposition 2.3.10 R¥(x) = &, where & is a Dirac-delta function and R (z) is
given in (2.21) with o = 0.

Proof. See [12, p10]. O
Definition 2.3.11 Let = = (z1, %2, ..., %n) be a point of the n-dimensional space
R,

V=c(a?+ 22+ ...+ T2 — &y — Toya — -+ — Tpig (2.31)
and

W= +a2+...+22) = Top — Togz — - — Tpigs (2.32)

where p + q = n. The interior of forward cone defined by T'+(A4) = {z € R™:
71 > 0,A >0} for A=V, W. For any complez numbers o and B, define

S (z) = {%% for 3 € L4(V), (2.33)
0 fO'r‘ T ¢ F.[. (V):
and .
TH(z) = {Iff @ Jorz €L4(W), (2.34)
0 for z ¢ T (W),
where

% D(=2=2)T(15%)T(a)

T(“E2)(55%)
The function S¥(z) and Tf (z) are introduced by Y. Nozaki 9, p72]. It is well
known that such functions are ordinary functions if Re(a) > n and Re(B) =z n
and are distributions of & and B if Re(a) < n and Re(B) < n respectively.

Kn(a) = for a=a,p. (2.35)

By putting p = 1 in (2.31), (2.32) and (2.35) and using the Legendre’s
duplication of I'(z) : T'(22) = 92:-1p=3D(2)['(z + 1) then (2.33) and (2.34)
reduce to e

M (5) = {—-—‘{f:g for x € T (V),

(2.36)
0 forz ¢ T.(V),

and

%—E
NP (@) = Yy forzel (W), (2.37)
0 forz¢ Du(W),
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respectively, where Hy(a) = n"7 2°7I[(&=22)1'(¢) for a = q, ﬁ V = dz? -
i—...—gand W=czl—zi—...— 3:2 The functions MF 2 (z) and N§'(z)
are precisely called the Hyperbolic kemel of Marcel Riesz.

Definition 2.3.12 Let = (21,%2,...,%,) € R and the functions A%(x) and
Lt (x) be defined by

¢ X
A@) = 5 (2:38)
and o
Y=z
Ly(z) =5 ) (2.39)
where X =A@+ 23+ ...+ a2 +x2, +...+22,, Y =@l +23+... +
r P+ pt+q 3
T2 T TEAT(%
$§)+$§+1+...+$g+q yP+qg=mn, Pn("}’) H—ﬂ:E)Zl,P( )=Tﬂ%—,,(—)2—),’y and

v are complexr numbers.

Definition 2.3.13 Let ¢; and cy be positive numbers, p+q = n and k is a
nonnegative integer. The ultra-hyperbolic operators iterated k times I:|f§1 and

Of are defined by
g
52
( Z -3 BEQ_) , (2.40)

j=p+1
and

. R R P A
[k = %;355_23_2:3 . (2.41)

j=p+1

The Laplacian operators dterated k times AF and AE are defined by

c1—(2zax2 Z ) , (2.42)

and

. 1 P 32 pt+q 32 k
Acz= (—22—6?4- Z ﬁ) . (243)

2= % n %
Proposition 2.3.14 Let ¢; and co be positive numbers. Given the equations
0O u(z) =6, (2.44)

and
O o(z) = 4, (2.45)
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where OF and 00f, are defined by (2.40} and {2 41) respectively, x € R* and 6
is the Dirac-delta functzon Then we obtain u(z) = SE(z) and v(z) = TH(x)
as an elementary solution of (2.44) and (2.45) respectively. Here SE(z) and
TH(z) are defined by (2.33) and (2.34) respectively with o = B = 2k.

Proof. See(12, p11]. O
Proposition 2.3.15 Let ¢; and ¢y be positive numbers. Given the equations

AE u(z) =4, (2.46)
and

N v(z) =6, (2.47)

where AY and a%d are defined by (2.42) and (2.48) respectively. Then we
obtain u( ) (-1 ) ¢ (z) and v(z) = (-1)FL4,(z) as an elementary solution
of (2.46) and (2.47) respectwely Here AL (z) and L&, (z) are defined by (2.38)
and (2.89) respectively with v = v = 2k.

Proof. See[3, p118]. O
Proposition 2.3.16 Let ¢; is a positive number. Given the equation

AF y(z) =0 (2.48)

(m)
where A is defined by (2.42). Then we obtain u(z) = (—1)k1 (Az(k 1) (m)) "
as a solution of (2.48) where m is a nonnegative integer with m = "’4 , n >4,

(m)
n is even and (Ag(k_l) (a:)) is a function defined by (2.38) with m derivative
with v = 2(k — 1).

Proof, We first show that the generalized function u(z) = 6™ (X) where X =
A2+ 2 + ... +32) + a2, +... + 35y, s asolution of

Dgu(z)y =0 (2.49)
where A, = —;Zp:%—l- _%I -(%Zg, p+g=nand z = (z1,...,Z,) € R™.
Now fori=1,2,. - LD, Jv:pﬁ;vej

0

——8M(X) = 26} I(X),

0z;

d?

ZAm(X) = 280D + edals 1)
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and for j =p+1,p+2,...,p+ g, we obtain

o)
Y g(m) — 2 g(m+1)

50 (X) = 2z26mD(X),
0%

5:7 6m(X) = 200m(X) + 4236 (X).

Therefore
pta 82

A 8™(X) = 223 ; 5™ (XY + Z

"'p+1

2p8T™ D (X)) + 4¢3 Z 2260 (X )]

i=1

5fm) (0

pteq
+ {2:}5(”‘“)()() +4 ) 3:3.5(*“1‘2)(){)]

J=p+1

= 2ns™ (X)) + 4X 6D (X)

= 206D (X) — 4(m + 2)6™TD(X)

by Proposition 2.2.9 with P = X = (a2 + 23 + ...+ 22) + Ty + ... + Thyy.

Thus £, 8™(X) = [2n — 4(m + 2)]6(X) = 0 it 20— 4{m +2) = 0 or if
m =254 n > 4 and n is even. Now Afu(z) = &, (A5 'y u(z)) = 0 then from
the above proof A¥~lu(z) = 6(™(X) with m = idn >4 a.nd n is even.

Convolving both sides of this equation by the function (—1)¥~ 2(k_1)( z), we
obtain u(z) = (—1)*1A%, ; (z) ¥ 8™ (X) by Proposition 2.3.15. Now from
(2.38),

X2 k—21 J—1 -

Ag(k—l) (z) = m

Hence
2(k—=1)—n
2

Ay (@) *6™(X) = XCICEE) * 60 (X)

X2§k—21]-n (m)
[ ))]

P, (2(k —
= [Ag(k—l) (33)] ) .

(m)
1t follows that u(z) = (—1)F* [Ag(k_l) (:c)] is a solution of (2.49) with m =

z=4 n >4 and n is even. 0
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Proposition 2.3.17 The functions A%, (z) and L, (z) are the inverse of the
conwolutions algebra of A% (z) and LS, (z) respectively, that is

Ae—zk (z) * Agk(m) = A£—2k+2k (z) = Ag(m) =,

and
L‘_Zk(m) * Lgk (z) = L£2k+2k(m) = Lﬁ(f) =4,

Proof. See[3, pl58]. a





