Chapter 3

The Diamond Kernel of Marcel Riesz

In this chapter, we consider some properties of the Diamond kernel of Marcel Riesz $K_{2k,2k}$. At first we consider the value of $K_{2k,2k}$ acting on φ , that is $\langle K_{2k,2k}, \varphi \rangle$ and second $K_{2k,2k} * \varphi$ where φ is a testing function of the space \mathcal{D} .

3.1 The Value of the Diamond Kernel $K_{2k,2k}$ of Marcel Riesz

In this section, we shall evaluate the Diamond kernel $\langle K_{\alpha,\beta}, \varphi \rangle$ of Marcel Riesz, where $\varphi \in \mathcal{D}$.

Proposition 3.1.1 Let φ be continuous and infinitely differentiable with compact support. If n is even, $n \geq 2(k+1)$ and p is odd, then

$$< K_{2k,2k}(x), \varphi(x) > = C < \delta_1^{(\frac{n}{2}-k-1)}(U), \phi >,$$

where k is a positive integer, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, n is a dimension of the Euclidean space \mathbb{R}^n , $K_{2k,2k}(x)$ is given by (2.27) with $\alpha = \beta = 2k$, ϕ is given by (3.6),

 $U=x_1^2+\ldots+x_p^2-x_{p+1}^2-\ldots-x_{p+q}^2,\ \ p+q=n,$

 $<\delta_1^{(\frac{n}{2}-k-1)}(U), \phi>$ is given by (3.24) with $m=\frac{n}{2}-k$ and

$$C = \frac{4^{1-2k}\pi^{\frac{1-n}{2}}(\frac{n-2k-2}{2})!\sin(\frac{p}{2}\pi)}{(\frac{n-2}{2})![(k-1)!]^2}.$$

Proof. Let us begin by considering

$$\langle K_{\alpha,\beta}(x), \varphi(x) \rangle = \langle R_{\alpha}^{H}(x) * R_{\beta}^{\ell}(x), \varphi(x) \rangle$$

$$= \int_{\mathbb{R}^{n}} R_{\alpha}^{H}(x) * R_{\beta}^{\ell}(x) \varphi(x) dx$$

$$= \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} R_{\alpha}^{H}(y) R_{\beta}^{\ell}(x-y) \varphi(x) dy dx$$

$$= \int_{\mathbb{R}^{n}} R_{\alpha}^{H}(y) \{ \int_{\mathbb{R}^{n}} R_{\beta}^{\ell}(x-y) \varphi(x) dx \} dy. \tag{3.1}$$

Now we consider $\int_{\mathbb{R}^n} R^{\ell}_{\beta}(x-y)\varphi(x) dx$ and transform it into bipolar coordinates defined by

$$x_1 - y_1 = r\omega_1, x_2 - y_2 = r\omega_2, \dots, x_n - y_n = r\omega_n, \sum_{i=1}^n \omega_i^2 = 1.$$

Thus $r = ((x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2)^{1/2}$ and the element of volume is given by $dx = r^{n-1} dr d\omega. \tag{3.2}$

where $d\omega$ is the element of surface area on the unit sphere Ω in \mathbb{R}^n . Therefore by (2.25), we obtain

$$\int_{\mathbb{R}^n} R_{\beta}^{\ell}(x-y)\varphi(x) dx = \frac{1}{W_n(\beta)} \int_{r=0}^{\infty} r^{\beta-n} \{ \int_{\Omega} \varphi(y+r\omega) d\omega \} r^{n-1} dr, \qquad (3.3)$$

where $W_n(\beta)$ is given by (2.26). By the mean value for integral, we have

$$\int_{\Omega} \varphi(y + r\omega) \, d\omega = \Omega_n S_{\varphi}(y, r), \tag{3.4}$$

where

$$\Omega_n = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})}$$

is the hypersurface area of the unit sphere imbedded in the Euclidean space of n dimension and $S_{\varphi}(y,r)$ is the mean value of $\varphi(y+r\omega)$ on the sphere of radius r. Thus, from (3.3) and (3.4), we obtain

$$\int_{\mathbb{R}^n} R_{\beta}^{\ell}(x-y)\varphi(x) \, dx = \frac{\Omega_n}{W_n(\beta)} \int_{r=0}^{\infty} r^{\beta-1} S_{\varphi}(y,r) \, dr. \tag{3.5}$$

Now by I.M. Gelfand and G.E. Shilov [5, p71], we can assert that $S_{\varphi}(y,r)$ (defined for $r \geq 0$) has bounded support and infinitely differentiable. Thus if we put

$$\phi(y) = \langle r^{\beta-1}, S_{\varphi}(y, r) \rangle = \int_{r=0}^{\infty} r^{\beta-1} S_{\varphi}(y, r) \, dr, \tag{3.6}$$

then by Proposition 2.2.6, $\phi(y)$ has bounded support and infinitely differentiable and therefore $\int_{\mathbb{R}^n} R_{\beta}^{\ell}(x-y)\varphi(x) dx$ has bounded support and infinitely differentiable. Now we substitute (3.6) into (3.5) and by (3.1) and (2.21), we obtain

$$\langle K_{\alpha,\beta}(x), \varphi(x) \rangle = C_n(\alpha,\beta) \int_{U>0} [U(y)]^{\frac{\alpha-n}{2}} \phi(y) \, dy,$$
 (3.7)

where

$$C_n(\alpha, \beta) = \frac{\Omega_n}{W_n(\beta)K_n(\alpha)}.$$

Let us transform into bipolar coordinates defined by

$$y_1 = s\omega_1, y_2 = s\omega_2, \dots, y_p = s\omega_p, \sum_{i=1}^p \omega_i^2 = 1,$$

$$y_{p+1} = t\omega_{p+1}, y_{p+2} = t\omega_{p+2}, \dots, y_{p+q} = t\omega_{p+q}, \sum_{i=p+1}^{p+q} \omega_i^2 = 1,$$

where p + q = n.

In these coordinates the element of volume is given by

$$dy = s^{p-1}t^{q-1} ds dt d\Omega^{(p)} d\Omega^{(q)},$$

where $d\Omega^{(p)}$ and $d\Omega^{(q)}$ are the elements of surface area of the unit sphere in \mathbb{R}^p and \mathbb{R}^q , respectively.

We put

$$U(y) = y_1^2 + y_2^2 + \dots + y_p^2$$
$$- y_{p+1}^2 - \dots - y_{p+q}^2$$
$$= s^2 - t^2.$$

Then the equation (3.7) becomes

$$\langle K_{\alpha,\beta}(x), \varphi(x) \rangle = C_n(\alpha,\beta) \int_{U>0} (s^2 - t^2)^{\frac{\alpha - n}{2}} \phi(y) \, s^{p-1} t^{q-1} \, dt \, ds \, d\Omega^{(p)} \, d\Omega^{(q)}. \tag{3.8}$$

Let us write

$$\psi(s,t) = \int \phi(y) d\Omega^{(p)} d\Omega^{(q)}. \tag{3.9}$$

Thus we have

$$< K_{\alpha,\beta}(x), \varphi(x) > = C_n(\alpha,\beta) \int_{s=0}^{\infty} \int_{t=0}^{s} (s^2 - t^2)^{\frac{\alpha-n}{2}} \psi(s,t) \, s^{p-1} t^{q-1} \, dt \, ds.$$
 (3.10)

Now, by I.M. Gelfand and G.E. Shilov [5, p249-252] since $\phi(y) \in \mathcal{D}$, we can affirm that $\psi(s,t)$ is an infinitely differentiable function of s^2 and t^2 with bounded support.

We make the change of variable $u = s^2$ and $v = t^2$ in (3.10), writing

$$\psi(s,t) = \psi_1(u,v)$$

to obtain

$$\langle K_{\alpha,\beta}(x), \varphi(x) \rangle = \frac{1}{4} C_n(\alpha,\beta) \int_{u=0}^{\infty} \int_{v=0}^{u} (u-v)^{\frac{\alpha-n}{2}} \psi_1(u,v) u^{\frac{p-2}{2}} v^{\frac{q-2}{2}} dv du.$$
(3.11)

By putting v = uw, we have

$$\langle K_{\alpha,\beta}(x), \varphi(x) \rangle = C_n(\alpha,\beta) \left\{ \frac{1}{4} \int_{u=0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \left[\int_0^1 (1-w)^{\frac{\alpha-n}{2}} w^{\frac{q-2}{2}} \psi_1(u,wu) \, dw \right] \, du \right\}. \tag{3.12}$$

Now we shall consider the expression

$$\frac{1}{4} \int_{v=0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \left[\int_{0}^{1} (1-w)^{\frac{\alpha-n}{2}} w^{\frac{q-2}{2}} \psi_{1}(u, wu) \, dw \right] \, du. \tag{3.13}$$

This expression has two sets of poles. The first of those consists of the poles of

$$\phi(\frac{\alpha-n}{2},u) = \frac{1}{4} \int_0^1 (1-w)^{\frac{\alpha-n}{2}} w^{\frac{q-2}{2}} \psi_1(u,wu) \, dw. \tag{3.14}$$

This function, by [5, p254], is regular for all $\frac{\alpha-n}{2}$ except

$$\frac{\alpha - n}{2} = -1, -2, \dots, -m, \dots,$$
 (3.15)

where it has simple poles.

At these poles, by [5, p254, formula (12)], we have

$$\underset{\frac{\alpha-n}{2}=-m}{\operatorname{res}} \phi(\frac{\alpha-n}{2}, u) = \frac{(-1)^{m-1}}{4(m-1)!} \left[\frac{\partial^{m-1}}{\partial w^{m-1}} \{ w^{\frac{q-2}{2}} \psi_1(u, wu) \} \right]_{w=1}.$$
 (3.16)

Thus $\underset{\underline{\alpha-n}=-m}{\operatorname{res}} \phi(\frac{\alpha-n}{2}, u)$ is a functional concentrated on the surface of the U=0

On the other hand, even at regular points of $\phi(\frac{\alpha-n}{2}, u)$ the integral

$$\int_{u=0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha-n}{2}, u) du$$

may also have poles. This occurs at

$$\frac{\alpha - n}{2} = -\frac{n}{2}, -\frac{n}{2} - 1, \dots, -\frac{n}{2} - m, \dots, \tag{3.17}$$

where p + q = n.

At these points

$$\operatorname{res}_{\frac{\alpha-n}{2}=-\frac{n}{2}-m} \int_{u=0}^{\infty} u^{\frac{\alpha-n}{2}+\frac{p+q}{2}-1} \phi(\frac{\alpha-n}{2}, u) \, du = \frac{1}{m!} \left[\frac{\partial^m}{\partial u^m} \phi(-\frac{n}{2}-m, u) \right]_{u=0}. \tag{3.18}$$

Thus the residue of $\int_{u=0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha-n}{2}, u) \, du$ at $\frac{\alpha-n}{2} = -\frac{n}{2} - m$, is a functional concentrated on the vertex of the U=0 cone. Our purpose is to obtain the explicit value of $K_{\alpha,\beta}(x)$, $\varphi(x)$ where $\alpha=\beta=2k$.

We can put

$$\langle K_{2k,2k}(x), \varphi(x) \rangle = \lim_{\substack{\alpha \to 2k \\ \beta \to 2k}} \langle K_{\alpha,\beta}(x), \varphi(x) \rangle$$
 (3.19)

From (3.15) and (3.17), we know that if

$$\frac{2k-n}{2} = -m \; ; \; m = 1, 2, 3, \dots,$$

and

$$\frac{2k-n}{2} = \frac{-n}{2} - m \quad ; \quad m = 1, 2, 3, \dots,$$

the expression (3.19) has two cases of singularities.

The first case occurs at

$$n=2(k+m)$$
 ; $m=1,2,3,...$

but the another case does not occur since $2k \neq -m$ for each $m = 1, 2, 3, \ldots$. Therefore the expression (3.19) has singularities for $n \geq 2(k+1)$ and n even. Thus, in the case n odd and these case n even with $n \leq 2k$, there is no problem and we obtain the explicit formula (3.19) by passing the limit to (3.10) as α and β tend to 2k.

Now we shall evaluate its explicit expression in the case $n \ge 2(k+1)$ and n even. By (3.19) and (3.10), we obtain

$$\langle K_{2k,2k}(x), \varphi(x) \rangle = \left(\lim_{\substack{\alpha \to 2k \\ \beta \to 2k}} C_n(\alpha, \beta) \right) \times \left(\lim_{\substack{\alpha \to 2k \\ \alpha \to 2k}} \int_{s=0}^{\infty} \int_{t=0}^{s} (s^2 - t^2)^{\frac{\alpha - n}{2}} \psi(s, t) s^{p-1} t^{q-1} dt ds \right).$$

$$(3.20)$$

We note that it always true that $\frac{\alpha-n}{2} > -\frac{n}{2}$ for $\alpha = 2k$. Since the singular point occurs at $\frac{\alpha-n}{2} = -m$ and n is even, we can write (3.14) in the neighborhood of $\frac{\alpha-n}{2} = -m$ in the form

$$\phi(\frac{\alpha-n}{2},u) = \frac{\phi_0(u)}{\alpha-n+2m} + \phi_1(\frac{\alpha-n}{2},u),\tag{3.21}$$

where $\phi_0(u) = \underset{\frac{\alpha-n}{2}=-m}{\operatorname{res}} \phi(\frac{\alpha-n}{2}, u)$ and $\phi_1(\frac{\alpha-n}{2}, u)$ is regular at $\frac{\alpha-n}{2} = -m$. Thus

$$\int_0^\infty u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha - n}{2}, u) \, du = \frac{1}{\alpha + n + 2m} \int_0^\infty u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi_0(u) \, du + \int_0^\infty u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi_1(\frac{\alpha - n}{2}, u) \, du.$$

Therefore

$$\operatorname{res}_{\alpha=n-2m} \int_0^\infty u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha-n}{2}, u) \, du = \int_0^\infty u^{-m + \frac{p+q}{2} - 1} \phi_0(u) \, du,$$

where for $m \ge \frac{1}{2}(p+q)$ the integral is understood in the sense of its regularization. Inserting (3.16) for $\phi_0(u)$, we arrive at

$$\operatorname{res}_{\alpha=n-2m} \int_{0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha-n}{2}, u) \, du$$

$$= \frac{(-1)^{m-1}}{4(m-1)!} \int_{0}^{\infty} \left[\frac{\partial^{m-1}}{\partial w^{m-1}} \{ w^{\frac{q-2}{2}} \psi_{1}(u, wu) \} \right]_{w=1} u^{-m + \frac{p+q}{2} - 1} \, du. \tag{3.22}$$

This residue is a generalized function concentrated on the P=0 cone. If we write wu=v, we obtain

$$\left[\frac{\partial^{m-1}}{\partial w^{m-1}}\left\{w^{\frac{q-2}{2}}\psi_1(u,wu)\right\}\right]_{w=1} = \left[\frac{\partial^{m-1}}{\partial v^{m-1}}\left\{v^{\frac{q-2}{2}}\psi_1(u,v)\right\}\right]_{v=u} u^{-\frac{1}{2}q+k}$$

so that we may rewrite (3.22) in the form

$$\operatorname{res}_{\alpha=n-2m} \int_{0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha-n}{2}, u) \, du$$

$$= \frac{(-1)^{m-1}}{4(m-1)!} \int_{0}^{\infty} \left[\frac{\partial^{m-1}}{\partial v^{m-1}} \{ v^{\frac{q-2}{2}} \psi_{1}(u, v) \} \right]_{v=u} u^{\frac{p-2}{2}} \, du$$

$$= \frac{(-1)^{m-1}}{(m-1)!} < \delta_{1}^{(m-1)}(U(y)), \phi(y) >, \tag{3.23}$$

where

$$<\delta_1^{(m-1)}(U(y)), \phi(y)> = \frac{1}{4} \int_{u=0}^{\infty} \left[\frac{\partial^{m-1}}{\partial v^{m-1}} \left\{ v^{\frac{q-2}{2}} \psi_1(u,v) \right\} \right]_{v=u} u^{\frac{p-2}{2}} du. \quad (3.24)$$

Therefore in case of $m = \frac{n}{2} - k$, the equation (3.23) becomes

$$\operatorname{res}_{\alpha=2k} \int_{0}^{\infty} u^{\frac{\alpha-n}{2} + \frac{p+q}{2} - 1} \phi(\frac{\alpha-n}{2}, u) \, du = \frac{(-1)^{\frac{n}{2} - k - 1}}{\left(\frac{n-2k-2}{2}\right)!} < \delta_{1}^{(\frac{n}{2} - k - 1)}(U(y)), \phi(y) > .$$
(3.25)

Thus by (3.10), (3.12), (3.13), and (3.25), we obtain

$$\operatorname{res}_{\alpha=2k} \int_{s=0}^{\infty} \int_{t=0}^{s} (s^2 - t^2)^{\frac{\alpha - n}{2}} \psi(s, t) s^{p-1} t^{q-1} dt ds = \frac{(-1)^{\frac{n}{2} - k - 1}}{\left(\frac{n - 2k - 2}{2}\right)!} < \delta_1^{\left(\frac{n}{2} - k - 1\right)} (U(y)), \phi(y) > .$$
(3.26)

Now, we consider

$$\lim_{\substack{\alpha \to 2k \\ \beta \to 2k}} C_n(\alpha, \beta) = \lim_{\substack{\alpha \to 2k \\ \beta \to 2k}} \frac{\Omega_n}{W_n(\beta) K_n(\alpha)}$$

$$= \frac{2^{1-2k} \Gamma(\frac{n-2k}{2})}{\Gamma(\frac{n}{2}) \Gamma(k)} \lim_{\substack{\alpha \to 2k \\ \alpha \to 2k}} \frac{1}{K_n(\alpha)}$$

$$= \frac{2^{1-2k} \left(\frac{n-2k-2}{2}\right)!}{\left(\frac{n-2}{2}\right)! \left(\frac{n-2k-2}{2}\right)!} \lim_{\substack{\alpha \to 2k \\ \alpha \to 2k}} \frac{\pi^{\frac{1-n}{2}} \Gamma(\frac{2+\alpha-p}{2}) \Gamma(\frac{p-\alpha}{2})}{\Gamma(\frac{2+\alpha-p}{2}) \Gamma(\alpha)}.$$
(3.27)

Taking into account the Legendre's duplication formula

$$\Gamma(2z) = 2^{2z-1}\pi^{-1/2}\Gamma(z)\Gamma(z+\frac{1}{2}),$$

we obtain

$$\lim_{\alpha \to 2k} \frac{\Gamma(\frac{2+\alpha-p}{2})\Gamma(\frac{p-\alpha}{2})}{\Gamma(\frac{2+\alpha-n}{2}\Gamma(\frac{1-\alpha}{2})\Gamma(\alpha))} = \lim_{\alpha \to 2k} \frac{\Gamma(\frac{2+\alpha-p}{2})\Gamma(\frac{p-\alpha}{2})}{\Gamma(\frac{2+\alpha-n}{2})\Gamma(\frac{1-\alpha}{2})2^{\alpha-1}\pi^{-1/2}\Gamma(\frac{\alpha}{2})\Gamma(\frac{\alpha+1}{2})}.$$
(3.28)

We know from Proposition 2.1.4 that

$$\underset{\lambda = -k}{\text{res}} \Gamma(\lambda) = \frac{(-1)^k}{k!}, \quad k = 0, 1, 2, \dots,$$
(3.29)

thus $(n \text{ even and } n \geq 2(k+1))$

$$\underset{\alpha=2k}{\operatorname{res}} \Gamma\left(\frac{2+\alpha-n}{2}\right) = \frac{(-1)^{\frac{n-2k-2}{2}}}{(\frac{n-2k-2}{2})!}.$$
(3.30)

Now consider

$$\lim_{\alpha \to 2k} \Gamma\left(\frac{1-\alpha}{2}\right) \Gamma\left(\frac{1+\alpha}{2}\right) = \frac{(-1)^k \Gamma(\frac{1}{2})}{(k-\frac{1}{2})(k-\frac{3}{2})\dots(\frac{1}{2})} \cdot (k-\frac{1}{2})(k-\frac{3}{2})\dots(\frac{1}{2})\Gamma(\frac{1}{2})$$

$$= (-1)^k \pi. \tag{3.31}$$

Lastly, we suppose that p is odd. Then by Proposition 2.1.2(2),

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z},$$

we have

$$\lim_{\alpha \to 2k} \Gamma\left(\frac{2+\alpha-p}{2}\right) \Gamma\left(\frac{p-\alpha}{2}\right) = \frac{\pi}{\sin \pi \left(\frac{2+2k-p}{2}\right)}$$

$$= \frac{-\pi(-1)^{k+1}}{\sin(\frac{p\pi}{2})}$$

$$= (-1)^k \pi \sin(\frac{p\pi}{2}). \tag{3.32}$$

Now, from (3.20), (3.26)-(3.28) and (3.30)-(3.32), we obtain

$$\langle K_{2k,2k}(x), \varphi(x) \rangle = \frac{(-1)^{\frac{n}{2}-k-1}}{\left(\frac{n-2k-2}{2}\right)!} \cdot \frac{2^{1-2k} \left(\frac{n-2k-2}{2}\right)!}{\left(\frac{n-2}{2}\right)!(k-1)!} \pi^{\frac{1-n}{2}}$$

$$\times \frac{(-1)^k \pi \sin\left(\frac{p}{2}\pi\right) \left(\frac{n-2k-2}{2}\right)!}{(-1)^{\frac{n}{2}-k-1} 2^{2k-1} (-1)^k \pi(k-1)!} \langle \delta_1^{(\frac{n}{2}-k-1)}(U(y)), \phi(y) \rangle$$

$$= \frac{4^{(1-2k)} \pi^{\frac{1-n}{2}} \left(\frac{n-2k-2}{2}\right)! \sin\left(\frac{p}{2}\pi\right)}{\left(\frac{n-2}{2}\right)![(k-1)!]^2} \langle \delta_1^{(\frac{n}{2}-k-1)}(U(y)), \phi(y) \rangle .$$

$$(3.33)$$

This completes the proof.

3.2 An Explicit Formula of the Solution of the Diamond Operator

The purpose of this section is to obtain an explicit form of the expression $K_{2k,2k}(x) * \varphi(x)$.

Proposition 3.2.1 Let φ be continuous and infinitely differentiable with compact support. If n is even, $n \geq 2(k+1)$ and p is odd, then for any $y \in \mathbb{R}^n$,

$$K_{2k,2k}(x) * \varphi(x) = C < \delta_1^{(\frac{n}{2}-k-1)}(U(x-y)), \phi(y) >,$$
 (3.34)

where k is a positive integer, $x = (x_1, ..., x_n) \in \mathbb{R}^n$, n is the dimension of the Euclidean space $\mathbb{R}^n, K_{2k,2k}(x)$ is given by (2.27), ϕ is given by (3.43),

$$U(x-y) = (x_1-y_1)^2 + \ldots + (x_p-y_p)^2 - (x_{p+1}-y_{p+1})^2 - \ldots - (x_{p+q}-y_{p+q})^2, \quad p+q=n,$$

$$C = \frac{4^{1-2k}\pi^{\frac{1-n}{2}}(\frac{n-2k-2}{2})!\sin(\frac{p}{2}\pi)}{(\frac{n-2}{2})![(k-1)!]^2},$$
(3.35)

and

$$<\delta_{1}^{(\frac{n}{2}-k-1)}(U(x-y)),\phi(y)> = \frac{1}{4} \int_{u=0}^{\infty} \left[\frac{\partial^{\frac{n}{2}-k-1}}{\partial v^{\frac{n}{2}-k-1}} \{v^{\frac{q-2}{2}} \psi_{1}(u,v,x)\} \right]_{v=u} u^{\frac{p-2}{2}} du, \tag{3.36}$$

where $\psi_1(u, v, x)$ is given by (3.48).

Proof. Let us begin by considering the convolution

$$R_{\beta}^{\ell}(x) * \varphi(x), \tag{3.37}$$

where $R_{\beta}^{\ell}(x)$ given by (2.25) and β is a complex number. We suppose that $\text{Re}(\beta)$ is large enough to be locally integrable. Thus

$$R_{\beta}^{\ell}(x) * \varphi(x) = \int_{\mathbb{R}^n} R_{\beta}^{\ell}(x-z)\varphi(z) dz. \tag{3.38}$$

Let us transform to bipolar coordinates defined by

$$x_1 - z_1 = r\omega_1, x_2 - z_2 = r\omega_2, \dots, x_n - z_n = r\omega_n, \sum_{i=1}^n \omega_i^2 = 1.$$

Thus $r = ((x_1 - z_1)^2 + (x_2 - z_2)^2 + \ldots + (x_n - z_n)^2)^{1/2}$ and the element of volume is given by

 $dz = r^{n-1} dr d\omega, (3.39)$

where $d\omega$ is the element of surface area on the unit sphere Ω in \mathbb{R}^n . Therefore by (3.38) and (2.25), we obtain

$$R_{\beta}^{e}(x) * \varphi(x) = \frac{1}{W_{n}(\beta)} \int_{r=0}^{\infty} r^{\beta-n} \{ \int_{\Omega} \varphi(x - r\omega) d\omega \} r^{n-1} dr, \qquad (3.40)$$

where $W_n(\beta)$ is given by (2.26). By the mean value for integral, we have

$$\int_{\Omega} \varphi(x - r\omega) \, d\omega = \Omega_n S_{\varphi}(x, r), \tag{3.41}$$

where

$$\Omega_n = \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})}$$

is the hypersurface area of the unit sphere imbedded in the Euclidean space of n dimension and $S_{\varphi}(x,r)$ is the mean value of $\varphi(x-r\omega)$ on the sphere of radius r. Thus, from (3.40) and (3.41), we obtain

$$R_{\beta}^{\ell}(x) * \varphi(x) = \frac{\Omega_n}{W_n(\beta)} \int_{r=0}^{\infty} r^{\beta-1} S_{\varphi}(x, r) dr.$$
 (3.42)

Now, by I.M. Gelfand and G.E. Shilov [5, p71], we can assert that $S_{\varphi}(x,r)$ (defined for $r \geq 0$) has bounded support and infinitely differentiable. Thus if we put

 $\phi(x) = \langle r^{\beta-1}, S_{\varphi}(x, r) \rangle = \int_{r=0}^{\infty} r^{\beta-1} S_{\varphi}(x, r) \, dr, \tag{3.43}$

then by Proposition 2.2.6, $\phi(x)$ has bounded support and infinitely differentiable and therefore $R_{\beta}^{\ell}(x) * \varphi(x)$ has bounded support and infinitely differentiable. Thus by (2.21),(3.42) and (3.43), we obtain

$$K_{\alpha,\beta}(x) * \varphi(x) = (R_{\alpha}^{H}(x) * R_{\beta}^{\ell}(x)) * \varphi(x)$$

$$= R_{\alpha}^{H}(x) * (R_{\beta}^{e}(x) * \varphi(x))$$

$$= R_{\alpha}^{H}(x) * \frac{\Omega_{n}}{W_{n}(\beta)} \phi(x)$$

$$= \frac{\Omega_{n}}{W_{n}(\beta)} \int_{\mathbb{R}^{n}} R_{\alpha}^{H}(x - y) \phi(y) dy$$

$$= C_{n}(\alpha, \beta) \int_{U > 0} [U(x - y)]^{\frac{\alpha - n}{2}} \phi(y) dy \qquad (3.44)$$

where

$$C_n(\alpha, \beta) = \frac{\Omega_n}{W_n(\beta)K_n(\alpha)}.$$
 (3.45)

Let us transform to bipolar coordinates defined by

$$x_1 - y_1 = s\omega_1, x_2 - y_2 = s\omega_2, \dots, x_p - y_p = s\omega_p, \sum_{i=1}^p \omega_i^2 = 1,$$

$$x_{p+1} - y_{p+1} = t\omega_{p+1}, x_{p+2} - y_{p+2} = t\omega_{p+2}, \dots, x_{p+q} - y_{p+q} = t\omega_{p+q}, \sum_{i=p+1}^{p+q} \omega_i^2 = 1,$$

where p + q = n.

In these coordinates the element of volume is given by

$$dy = s^{p-1}t^{q-1} ds dt d\Omega^{(p)} d\Omega^{(q)},$$

where $d\Omega^{(p)}$ and $d\Omega^{(q)}$ are the elements of surface area of the unit sphere in \mathbb{R}^p and \mathbb{R}^q , respectively.

We put

$$U(x-y) = (x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_p - y_p)^2$$
$$- (x_{p+1} - y_{p+1})^2 - \dots - (x_{p+q} - y_{p+q})^2$$
$$= s^2 - t^2.$$

Then the equation (3.44) becomes

$$K_{\alpha,\beta}(x)*\varphi(x) = C_n(\alpha,\beta) \int_{U>0} (s^2 - t^2)^{\frac{\alpha - n}{2}} \phi(y) \, s^{p-1} t^{q-1} \, dt \, ds \, d\Omega^{(p)} \, d\Omega^{(q)}. \tag{3.46}$$

Let us write

$$\psi(s,t,x) = \int \phi(y) d\Omega^{(p)} d\Omega^{(q)}.$$

Thus we have

$$K_{\alpha,\beta}(x) * \varphi(x) = C_n(\alpha,\beta) \int_{s=0}^{\infty} \int_{t=0}^{s} (s^2 - t^2)^{\frac{\alpha - n}{2}} \psi(s,t,x) s^{p-1} t^{q-1} dt ds. \quad (3.47)$$

Now, $\psi(s,t,x)$ is an infinitely differentiable function of s^2 and t^2 with bounded support.

We make change of variable $u = s^2$ and $v = t^2$ in (3.47), writing

$$\psi(s, t, x) = \psi_1(u, v, x),$$
 (3.48)

then we can prove by proceeding as the proof of Proposition 3.1.1 from the equation (3.11) to the end of the proof but we must substitute $\psi_1(u,v)$,

$$< K_{2k,2k}(x), \varphi(x) >, < K_{\alpha,\beta}(x), \varphi(x) >, \text{ and } < \delta_1^{(m-1)}(U(y)), \phi(y) > \text{ into } \psi_1(u,v,x), K_{2k,2k}(x) * \varphi(x), K_{\alpha,\beta}(x) * \varphi(x), \text{ and } < \delta_1^{(m-1)}(U(x-y)), \phi(y) > \text{ respectively. This completes the proof.}$$

It is to note that if the hypothesis of Proposition 3.2.1 holds, then by Proposition 2.3.9, we have $u(x) = (-1)^k K_{2k,2k}(x) * \varphi(x)$ is a solution of the equation (2.30), where $K_{2k,2k}(x) * \varphi(x)$ is given by (3.34).

We remark that the formula we have obtained for the functions of the family \mathcal{R} are also valid for functions of the class \mathcal{A} ; except that p and q must be interchanged, and in all the formula $\delta_1^{(\frac{n}{2}-k-1)}(U(x-y))$ must be replaced by $\delta_1^{(\frac{n}{2}-k-1)}(-U(x-y)) = (-1)^{(\frac{n}{2}-k-1)}\delta_2^{(\frac{n}{2}-k-1)}(U(x-y))$, where

$$<\delta_{2}^{(\frac{n}{2}-k-1)}(U(x-y)), \phi(y)> = \frac{(-1)^{(\frac{n}{2}-k-1)}}{4} \times \int_{v=0}^{\infty} \left[\frac{\partial^{\frac{n}{2}-k-1}}{\partial u^{\frac{n}{2}-k-1}} \{ u^{\frac{p-2}{2}} \psi_{1}(u,v,x) \} \right]_{u=v} v^{\frac{q-2}{2}} dv.$$