Chapter 3

The Diamond Kernel of Marcel
Riesz

Tn this chapter, we consider some properties of the Diamond kernel of Marcel
Riesz Kok or. At first we consider the value of Koy or acting on ¢, that is

< Kop ok, @ > and second Koy or * ¢ Where @ is a testing function of the space
D.

3.1 The Value of the Diamond Kernel Ky o1, of Mar-
cel Riesz

In this section, we shall evaluate the Diamond kernel < K,p,¢ > of Marcel
Riesz, where @ € D.

Proposition 3.1.1 Let @ be continuous and infinitely differentiable with compact
support. If n is even, n > 2(k + 1) and p is odd, then

< Kopou(@),p(z) >=C < &2 (U), 6 >,

where k is a positive integer, £ = (Z1,...,%n) € R, n is a dimension of the
EBuclidean space R, Ko ox(z) is given by (2.27) with « = 8 = 2k, ¢ is given by
(3.6),

U=ait...+2i—22, —...—z0, p+eg=mn,
55 (WY, ¢ > is given by (3.24) withm = § — k and

41 2k (n —2k~ 2)'8in(§ﬂ')

C= =
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Proof. Let us begin by considering
< Ka,ﬁ(x)s (,0(22) > =< Rg(ﬂ;) * Rf;(:l?), ‘P(x) >

= fﬂRf(:z:) * Rg(z)o(z) dz
= [ | RIG)RSG -yl dyds
= f,, Rf(y){/w Rfs(:n — y)p(z) dz} dy. (3.1)

Now we consider [p. R5(z —y)p(z) dz and transform it into bipolar coordinates
defined by

n
§ : 2 __
$1—y1=Tw1,$2—y2=7"w2;---afﬂn—yn='f'wm wz""l'
i=1

12 and the element of vol-

Thus 7 = ((z; — 91)? + (T2 = y2)? + - + (Tn — Yn)?)
ume is given by

dr = r" " drdw, (3.2)
where dw is the element of surface area on the unit sphere  in R". Therefore
by (2.25), we obtain

[ B et = g | ) - [oty+rydoptar, 9

where W, () is given by (2.26). By the mean value for integral, we have

[g oy + 1) do = DS, (1, 7), (3.4)
where ol
ﬂ-'ﬂ-
Qn = w7
I'(%)

is the hypersurface area of the unit sphere imbedded in the Euclidean space of
n dimension and S,(y,r) is the mean value of ¢(y + rw) on the sphere of radius
7. Thus, from (3.3) and (3.4), we obtain

Q oo

Ri(z — y)p(z dm:——”—-f P18, (y, ) dr. 3.5

[ ol —ve = g | 39

Now by LM. Gelfand and G.E. Shilov [5, p71], we can assert that Sy(y,7)

(defined for r > 0) has bounded support and infinitely differentiable . Thus if
we put- o

qb(y) =< T'B_ln S‘P(y: T) >= f Tﬁ_lS‘P(y?T) d’f‘, (36)

r=0
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then by Proposition 2.2.6, ¢(y) has bounded support and infinitely differen-
tiable and therefore [p. R5(z — ¥)¢(z) do has bounded support and infinitely
differentiable. Now we substitute (3.6) into (3.5) and by (3.1} and (2.21), we
obtain

<faﬁmxww)>=04%ﬁyﬂwuuwﬁ¥¢www, (3.7)
where Q
CnlesB) = By Rnfa)

Let us transform into bipolar coordinates defined by

P
— —_ — 2 _
Y1 = SW1, Yz = SWa, ..., Yp = Sy, E w; =1,

i=1
ptg
— — — 2
Yp41 = tWpt1, Ypi2 = Wpizy - -3 Yptg = Mg, Y wi=1,
i=p+1

where p4+qg=n. _
In these coordinates the element of volume is given by

dy = "~ 149 ds dt dQ® gl

where dQ)® and dQ(@ are the elements of surface area of the unit sphere in R?
and RY, respectively.

We put
U=y} +9+.. .+
2 2
Y17 T Ui
=% —¢%.

Then the equation (3.7) becomes

< Ko p(2), 0(z) >= Cule, B) (s2 — 12)%7" p(y) 11971 dt ds dOP) O,
U>0

(3.8)
Let us write

Maﬂ=fawﬂwmmﬂ (3.9)

Thus we have ‘

<&M@&@>=®@ﬁ):L}ﬁ—ﬁ%%@ﬂﬂﬂﬁﬁwwmm
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Now, by LM. Gelfand and G.E. Shilov [5, p249-252] since ¢(y) € D, we can af-
firm that ¥ (s, ) is an infinitely differentiable function of s* and #? with bounded

support.
We make the change of variable u = % and v = ¢* in (3.10), writing

¢(S: t) = ¢l (U, 'U)
tQ obtain
< Ko p(z), 0(z) >= %Cn(aa B) /: [:)(u — )7 1y (u,v) W T’ dvdu.

(3.11)
By putting v = vw, we have

00 1
< Ko p(z), o(z) >= Cn(a:ﬁ){%/‘ TR [/ (1- w)%_ﬂwg;_z%(%ww dw} du}.
u=0 0
(3.12)
Now we shall consider the expression

1 [® o ! azn  g=
Z/ u ST [/ (1— w)ngz_zq,bl(u,wu) dw] du. (3.13)
u=0 0
This expression has two sets of poles. The first of those consists of the poles of
— 1/t acn  g-
q&(g-z—n,u) = Z/ (1- w)T‘wgzii,bl(u,wu) dw. (3.14)
0

This function, by [5, p254}, is regular for all 5™ except
a—n
2

where it has simple poles.
At these poles, by [5, p254, formula (12})], we have

. (_1)m—1 [am—l
4(m — 1)! | Bw™1

=_1,-2,...,—m,..., (3.15)

-1

res (——

Qe=nt
e=B—_m 2

) W, wu)}] CET

w=1

Thus res ¢(%5%,u) is a functional concentrated on the surface of the U =0
%:_m
cone.

On the other hand, even at regular points of ¢(23%,u) the integral

0
f ugE_ﬂJ“%q“qu(a ; n’ u) du
u=0

may also have poles. This occurs at

o—n [ i K
=g =L —m, (3.17)
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where p+ g = n.
At these points

® g oo 107, m
%E?_Sa_m‘/,;: T 2 u)du = m! | Ou™ ( 2 m, u) .
(3.18)
Thus the residue of f:zo u%“%g"lgé(%,u) du at %% = —% —m, is a func-

tional concentrated on the vertex of the U = 0 cone. Our purpose is to obtain
the explicit value of < K, 3(z), ¢(z) > where a = 8 = 2k.
We can put
< Ko or(z), p(z) >= O}Lrgk < Ko p(z), o(z) > (3.19)
B2k

From (3.15) and (3.17), we know that if

% —
2n:ﬂn;m=Lzm“,

and ok
—-n  -n
5 = 7-—m . m=1,2,3,...,
the expression (3.19) has two cases of singularities.
The first case occurs at

n=2k+m) ; m=1,2,3,...

but the another case does not occur since 2k # —m for each m = 1,2,3,....
Therefore the expression (3.19) has singularities for n > 2(k + 1) and n even.
Thus, in the case n odd and these case n even with n < 2k, there is no problem
and we obtain the explicit formula (3.19) by passing the limit to (3.10) as o
and 8 tend to 2k.

Now we shall evaluate its explicit expression in the case n > 2(k +1) and n
even. By (3.19) and (3.10), we obtain

< Korar(z), p(z) > = ali—glkcﬂ(a’ B)

B2k
o0 3 aen
X ( lim / (5% — 1377 (s, t)s? 1T  dt ds) :
a2k o0 Ji=0
(3.20)
We note that it always true that 25 > —% for & = 2k. Since the singular
point occurs at 252 = —m and n is even, we can write (3.14) in the neighborhood
of 5% = —m in the form
®—7n do(u) a—n
= 3.21
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where ¢o(u) = 165 @(%52,u) and ¢1(%52,u) is regular at 25* = —m. Thus

e=n__ .

m —
f ug‘g_""'%q"lqb(a n,u) du
0

(6]

1 /°° a=n Pt}
S — u z T2 ¢0(u du
+n+2m J, )
co
=1 a -
—I—/ u_ﬁ*”*%q"lgbl( n,u) du.
0

2
Therefore
oG _ oo
res f ua5"+%q—1¢(a n,u) du:/ w0 (u) du,
a=n—2m 0 2 1]

where for m > 3(p+¢) the integral is understood in the sense of its regulariza-
tion. Inserting (3.16) for ¢o(u), we arrive at

e o—n
res f WS LG(E 2 w) du
0

a=n—2m 2
(=)™~ /oo om a2 —m+E—]
T im0, |[GwmT {w'z 1 (u, wu)} v du.  (3.22)

This residue is a generalized function concentrated on the P = 0 cone. If we
write wu = v, we obtain

[ 6m—1

8wm-—-1

{wHE—zgpl(u,wu)}] . = [;::1 {v'qZ_zq,bl(u,'u)}} e LA

v=U

so that we may rewrite (3.22) in the form

o)
nptg g, X— T
res / u T TR g( ,u)du
a=n—2m [, 2

B 4((; ):;' /om [5;—11{”%3%”1(%?))}] =u”— du

= E <)) >, (329

where

<TI0 5= [ [

u=0 avm—l

{*ug%z"d;l (2, 'v)}] u"T du.  (3.24)

v=U

Therefore in case of m = % — k, the equation (3.23) becomes

o] _ 1y E—k-1 n
" res /0 ua;—n""%i_lqb(aQ—n,u) du = (—1)2—1 < 6§E_k_1}(U(’y)): #(y) > .

(n—22k—2) 1
(3.25)
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Thus by (3.10), (3.12), (3.13), and (3.25), we obtain

1,9-1 -1 i_k 1 E'_
= f oft- STl 57 dtds_&(le}z—) <62 U), ¢(w) > |

a=2k
(3.26)
Now, we consider
lim Cp (e, B) = 1i -
g%lﬁ et g’l%lim
21 21:1-\( —Ek)
lim
C(2)T(k) a2k Ku(a)
- n—2k— (s 5
| oi-m (n=2=2)  gl3Rp(Ztesrp(ee) (3.27)

= (E2)1(k - 1)} ame T(ZES=E) (=)D (a)'

Taking into account the Legendre’s duplication formula

N(2s) = 2% Tz + ),

we obtain

G NG P(Ee)r(25e)
ak D(ZE=T (G a) ek [T (58) 25 ir1/2T(3)T(50)

(3.28)
We know from Proposition 2.1.4 that
(=1)*
Arzeka‘(A) =" k=0,1,2,..., (3.29)
thus (n even and n > 2(k + 1)) -
2+a—n (-1)=%= |
aI‘f?skF ( 5 ) = a3y (3.30)
k21

Now consider

- l1-« 1+a) (-1)*1(3) 1.3 1.1
i1 (%) 7 ( ) =e 5@ Fk3) GG
= (—1)*r. (3.31)

Lastly, we suppose that p is odd. Then by Proposition 2.1.2(2),

T

I - 2) =

sin 7z’
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we have

. 24+ a-—p p—ay) T
alggkr( 2 )F( 2 )_sinw(@)
B _ﬂ.(_l)k+1
— sin(8)

= (—1)fr sin(%). (3.32)
Now, from (3.20),(3.26)-(3.28) and (3.30)-(3.32), we obtain

(_1)%_];;_1 21—2k (n—?zk—‘Z)]
< K k,2k($):¢(m) > = —k— S fn—
2 =22 )ik - 1)
(—1)Frsin(Br) (2=2=2)1
(=1)37% 12211} (k — 1)
405" (222 gin(E)

(22 - DY

-_n

2

<8 U W), 00) >

n_p .
< Uw), o) >
(3.33)
This completes the proof. O

3.2 An Explicit Formula of the Solution of the Dia-
mond Operator

The purpose of this section is to obtain an explicit form of the expression

Kop o(z) * @(z).

Proposition 3.2.1 Let ¢ be continuous and infinitely differentiable with compact
support. If n is even, n > 2(k + 1) and p is odd, then for any y € R,

Uz —y), 6w) >, (3.34)

Koo (z) # p(z) = C < 6;°
where k is a positive integer, © = (T1,...,Z.) € R, n is the dimension of the
Euclidean space R™, Koy 21(2) is given by (2.27), ¢ is given by (3.43),

Ulz—y) = ($1—yl)2+- . -+(-'L'p_yp)2_($p+1“yp+1)2_- . -_($p+q"yp+q)2, p+qg=n,

412k 3" (8=2=2) g (Br)

Co , 3.35
)~ 1P .
and
- oo F—k—1 g=2 p—2
<A e o = [ [T hna)] v
= T (3.36)

where Py (u,v,z) 15 given by (8.48).
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Proof. Let us begin by considering the convolution
Rl (s) * p(3), (3.37)

where Rf(z) given by (2.25) and § is a complex number. We suppose that
Re() is large enough to be locally integrable. Thus

Rj(z) » p(z) = R“‘Rg(a: — 2)p(z) d=. (3.38)

Let us transform to bipolar coordinates defined by

k]
Ty — 2 =TWi,Ta— 2y =TWa, ..., Ty — 2 = TWy, E wf:l.

i=1

Thus 7 = ((z1 — 21)2 + (22 — 22)* + ... + (Tp — z2)?)"/* and the element of vol-
ume is given by

dz = " dr dw, (3.39)

where dw is the element of surface area on the unit sphere €2 in R™. Therefore
by (3.38) and (2.25), we obtain

5(z) = p(r) = ! /rc’: 'r'ﬁ_"{fn o(z = rw) dwlr™ L dr, (3.40)

Wo(8) J=
where W, () is given by (2.26). By the mean value for integral, we have
j{;go(a: — rw) dw = Q,5,(z, 1), (3.41)
where >
Q, = -IT%-)-

is the hypersurface area of the unit sphere imbedded in the Euclidean space of
n dimension and S,(z,7) is the mean value of ¢(z — rw) on the sphere of radius
7. Thus, from (3.40) and (3.41), we obtain
¢ Q[ 5
Ry(z) * p(z) = r° 7 Sy(z, ) dr. (3.42)
Wﬂ( ) r=0
Now, by LM. Gelfand and G.E. Shilov {5, p71], we can assert that S,(z,r)

{defined for r > 0) has bounded support and infinitely differentiable . Thus if
we put

. o
$(z) =< rf1, 5,(z,7) >= f rf=18,(z, ) dr, (3.43)

r=0
then by Proposition 2.2.6, ¢(z) has bounded support and infinitely differentiable
and therefore Rj(z) * (x) has bounded support and infinitely differentiable.
Thus by (2.21),(3.42) and (3.43), we obtain
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= Ry (z) * (Rg(x) * v(z))
= Rl(a) 2 0(2)
Qy P
= Wn( ) _/,, Ra (:B - y)qb(y) dy

= Cu(e,f / Wy (340

where Q
Cola, f) = . 3.45
n( ?ﬁ) Wn(ﬁ)Kn(a) ( )
Let us transform to bipolar coordinates defined by
P
TL— Y1 = 8w, Ty — Yo = Sz, -, Tp — Yp = SWp, YW} = 1,
=1
pig
Tp1 = Yp+1 = HWpi1, Tpt2 — Ypt2 = Wpia, - - -y Tpyg — Yptg = tpyyg, Z wf =1,
i=p+1

where p + ¢ = n.
In these coordinates the element of volume is given by

dy = P11 ds dt dUPY 40D

where dQ® and dQ@ are the elements of surface area of the unit sphere in R?
and RY, respectively.

We put
Ulz—y)=(z1— )+ (@3 — )’ +... + (2, — yp)*
— (zpq1 — ?J'1r1+1)2 =i~ (Tppg — yp+q)2
= s* — ¢,

Then the equation (3.44) becomes
Kop(x)xo(z) = Coloy, B) | (2—12)57" d(y) sP~ 1191 dt ds dUP) dUD. (3.46)
U>o0

Let us write

W(st,7) = f Hly) 4O 4O,
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Thus we have
Kop(z) * p(z) = Crla, f) f f (52 — )T (s, b, x)sP "t L dtds. (3.47)
5=0 J =0 .

Now, v¥(s,t,z) is an infinitely differentiable function of s? and t? with bounded
support.
- We make change of variable u = s? and v = #? in (3.47), writing

(s, t,%) = 1(u,v,z), (3.48)

then we can prove by proceeding as the proof of Proposition 3.1.1 from the
equation (3.11) to the end of the proof but we must substitute ¥, (u, v),

< Koparn(z), 0(z) >, < Kaplz),0(z) >, and < ng_l)(U(y)),gb(y) > into

Y1 (u,v,2), Koxak(z) * 0(2),Kop(z) * (), and < 5§m_1)(U(x - 1)), o(y) >
respectively. This completes the proof. O

It is to note that if the hypothesis of Proposition 3.2.1 holds, then by Propo-
sition 2.3.9, we have u{x) = (—1)F Koy or(2) * () is a solution of the equation
(2.30), where Ko o (%) * (z) is given by (3.34).

We remark that the formula we have obtained for the functions of the family
R are also valid for functions of the class A ; except that p and ¢ must be

interchanged, and in all the formula 6§%_k—1)(U(:c — y)) must be replaced by
53Uz - y) = (-)EFET O (U — y)), where

. _1)(E—#-D)
<8I -y, o) > = T

o3 6%—&:—1 p=2 =2
X/ W{u 2 ’l/)l(u,’U,iL')} vz dv.

=0 2 u=v






