TABLE OF CONTENTS

ACKNOWLEDGEMENT	III
ABSTRACT (ENGLISH)	IV
ABSTRACT (THAI)	VI
TABLE OF CONTENTS	VIII
LIST OF TABLES	XII
LIST OF ILLUSTRATIONS	XIII
ABBREVIATIONS	XVI
I. INTRODUCTION	
1.1 Statement and significance of problem	1
1.2 Literature reviews	6
1.2.1 Platelet physiology	6
1.2.2 Thrombopoiesis	6
1.2.3 Megakaryocytic cells	7
1.2.3.1 Early development	7
1.2.3.2 Megakaryoblast	7
1.2.3.3 Promegakaryocyte or basophilic megakaryocyte	8
1.2.3.4 Granular megakaryocyte	8
1.2.3.5 Platelet release	
1.2.4 Platelet structure	lniv9rcity
1.2.4.1 Peripheral zone	10
1.2.4.2 Structural zone	r 17 e c
1.2.4.3 Organelle zone	18
1.2.4.4 Membranous systems	2.1

1.2.5 Platelet function	23
1.2.5.1 Platelet adhesion	24
1.2.5.2 Platelet shape change	25
1.2.5.3 Platelet release reaction	25
1.2.5.4 Platelet aggregation	26
1.2.6 Flow cytometry	28
1.2.6.1 Flow cytometry	28
1.2.6.2 Flow cytometry for platelet studies	28
1.2.6.3 Platelet surface markers	29
1.2.7 Thalassemia	31
1.2.7.1 Basic knowledge of thalassemia	31
1.2.7.2 Molecular defects of α-thalassemia	32
1.2.7.3 Molecular defects of β-thalassemia	35
1.2.7.4 Clinical features of β-thalassemia	37
β-Thalassemia	37
β-Thalassemia minor	37
β-Thalassemia intermedia	38
β-Thalassemia major	38
1.2.7.5 Thalassemia and oxidative stress	39
1.2.7.6 Thromboembolic manifestations in β-thalassemia	42
Thalassemia and coagulation defects	42
Deep venous thrombosis and pulmonary embolism	43
Cerebral thrombosis	M \45
Hypercoagulable state in thalassemia	46
1.2.7.7 Platelet activation	49

1.3 Objectives	51
II. MATERIALS AND METHODS	
A. Materials	52
B. Methods	54
1. Preparation of anti-platelet mixture	54
2. Preparation of plasma samples for platelet aggregation test	54
3. Preparation of red blood cells for flow cytometric analysis	56
4. Preparation of platelets for scanning electron microscopy (SEM)	58
5. Preparation of plasma for enzyme linked immunosorbent assay (ELISA)	59
6. Preparation of platelets for flow cytometric analysis	61
7. Preparation of platelet rich plasma, plasma and red blood cells	62
for co-culture	
III. RESULTS	
1. General data of the subjects	67
2. Anti-platelet mixture	67
3. Complete blood counts (CBC) data	69
3.1 Comparison of blood cell parameters between β-thalassemic patients	71
and healthy subjects	
4. Platelet aggregation test	73
5. Red cell membrane phosphatidylserine (PS) exposure	76
5.1 Comparison of %PS exposing RBCs between β-thalassemic patients	V=rSII)
and healthy subjects	
6. Platelet morphology by scanning electron microscopy (SEM)	80

6.1 Comparison of platelet morphology between β-thalassemic	83
patients and healthy subjects using SEM	
7. Plasma levels of β -thromboglobulin (β -TG) and platelet factor (PF4)	85
7.1 Comparison of plasma β-TG and PF4 concentration between	91
β- thalassemic patients and healthy subjects	
7.2 Relationship between plasma β-TG or PF4 levels and platelet count	94
7.3 Relationship between plasma β-TG and PF4 levels	95
7.4 Relationship of %activated platelets (by SEM) with	97
plasma β-TG and PF4 levels	
8. Activated platelets with CD63 expression (CD63 ⁺) counted by	98
flow cytometry	
8.1 Comparison of %CD63 ⁺ platelets in β-thalassemic patients	101
and healthy subjects	
8.2 Relationship of %CD63 ⁺ platelets and %activated platelets by SEM	102
8.3 Relationship of %CD63 ⁺ platelets and plasma β-TG and PF4 levels	102
8.4 Relationship of %PS exposing RBCs and %CD63 ⁺ platelets	103
9. Effect of β -thalassemic RBC and plasma on normal platelets (co-culture)	107
IV. DISCUSSION	114
v. conclusion	
VI. REFERENCES VII. APPENDIX	124 Versity
CURRICULUM VITAE	149

LIST OF TABLES

TAJ	BLE	PAGE	
1.	Some important platelet membrane glycoproteins (GP)	13	
2.	Some important contents of platelet δ -granules and α -granules	20	
3.	Monoclonal antibodies for flow cytometric determination of	30	
	immunological platelet activation		
4.	Complete blood counts data	70	
5.	Platelet count in the patients with and without splenectomy	5713	
6.	Platelet aggregability in β-thalassemia major and β-thalassemia/Hb E	75	
7.	Percentages of PS exposing RBCs	76	
8.	Percentages of PS exposing RBCs in β-thalassemia with and	76	
	without splenectomy		
9.	Platelet morphology by SEM	81	
10.	Plasma β-TG and PF4 concentration in IU/mL and IU/10 ⁶ plt	86	
11.	Plasma β-TG and PF4 concentration in IU/mL and IU/10 ⁶ plt	87	
	of β-thalassemia with and without splenectomy		
12.	Plasma levels of β-TG and PF4	88	
13.	Platelet activation markers and platelet morphology by SEM	96	
14.	Percentages of CD63 ⁺ platelets	98	
15.	Percentages of CD63 ⁺ platelets in the patients with and without	98	
	splenectomy I I I I I I I I I I I I I I I I I I I		
16.	Percentages of PS exposing RBCs and CD63 ⁺ platelets	104	
17.	The overall results of 3 pairs of co-culture	108	

LIST OF ILLUSTRATIONS

FIG	URE	PAGE	
1.	Development of megakaryocytic cells	9	
2.	Ultrastructure of platelet	10	
3.	Mechanism for signal transduction in platelet activation	17	
4.	Mechanism of platelet plug formation	27	
5.	Structure of β -globin and α -globin genes	37	
6.	Structure of normal plasma membrane	48	
7.	Mechanism phosphatidylserine (PS) distributions	48	
8.	Hypercoagulable state in thalassemia	50	
9.	Platelet aggregometer model Aggrecorder II (PA-3220)	55	
10.	Agonist reagents for platelet aggregation test	55	
11.	Flow cytometer model Becton Dickinson FACSort	57	
12.	Scanning electron microscope model JSM-840A	58	
13.	Processing of specimens for all analyses	65	
14.	Effect of individual anti-platelet drugs on platelet aggregation	68	
15.	Effect of anti-platelet mixture on platelet aggregation test	68	
16.	Comparison red blood cell count, hemoglobin and hematocrit	72	
17.	Comparison MCV, MCH and MCHC	72	
18.	Comparison of platelet count	Universit	
19.	Flow cytometric histogram of non-activated and activated RBC	e r 77/ e	
20.	Flow cytometric histogram of %PS exposing RBCs	78	
21.	Comparison of %PS exposing RBCs	79	

XIV

FIG	URE	PAGE	
22.	Scanning electron microscopic micrograph of healthy platelets	82	
23.	Scanning electron microscopic micrograph of thalassemic platelets	82	
24.	Comparison of platelet morphology by SEM	84	
25.	Comparison of platelet morphology by SEM in the patients	84	
26.	Calibration curve of plasma β-TG	85	
27.	Calibration curve of plasma PF4	85	
28.	Comparison of plasma β-TG concentration (IU/mL)	92	
29.	Comparison of plasma β-TG concentration (IU/10 ⁶ plt)	92	
30.	Comparison of plasma PF4 concentration (IU/mL)	593	
31.	Comparison of plasma PF4 concentration (IU/10 ⁶ plt)	93	
32.	Relationship of plasma β-TG levels and platelet count	94	
33.	Relationship of plasma PF4 levels and platelet count	94	
34.	Relationship of plasma β-TG and PF4 levels	95	
35.	Relationship between %activated platelets by SEM and plasma β -TG level	ls 97	
36.	Relationship between %activated platelets by SEM and plasma PF4 levels	97	
37.	Overlay flow cytometric histogram of CD63 ⁺ platelets	99	
38.	Flow cytometric histograms of %CD63 ⁺ platelets	100	
39.	Comparison of %CD63 ⁺ platelets	101	
40.	Relationship between $\%\text{CD63}^{+}$ platelets and $\%\text{activated platelets}$ by SEM	102	m
41.	Relationship between %CD63 ⁺ platelets and plasma β-TG levels	102	
42.	Relationship between %CD63 ⁺ platelets and plasma PF4 levels	103	SIL
43.	Relationship of %PS exposing RBCs and %CD63 ⁺ platelets	103	
44.	Comparison the ratio of activated platelets of 3 pairs	109	
	of co-culture experiments		

FIGURE	AGE
45. Overall ratio of 3 pairs of co-culture experiments	109
46. Comparison of %CD63 ⁺ platelets after co-culture with RBC	110
47. Comparison of %CD63 ⁺ platelets after co-culture with unabsorbed plasma	111
48. Comparison of %CD63 ⁺ platelets after co-culture with absorbed plasma	112
49. Comparison of %CD63 ⁺ platelets by co-culture experiments	113

ABBREVIATIONS AND SYMBOLS

% Percent

β Beta

α Alpha

γ Gamma

ε Epsilon

δ Delta

⁰C Degree Celsius

Abs Absorbance

ADP Adenosine 5' diphosphate

AV Annexin V

AVB Annexin V buffer

BSA Bovine serum albumin

β-TG Beta-thromboglobulin

CBC Complete blood cell count

CD42b Glycoprotein Ib_α

CD63 Glycoprotein 53

CPDA-1 Citrate-phosphate-dextrose-adenine formula 1

EDTA Ethylenediam inetetraacetic acid dipotassium dihydrate

ELISA Enzyme linked immunosorbent assay

Fe Iron

FeSO₄ Ferrous sulphate

g Gravity

XVII

gm Gram

g/dL Gram per deciliter

Hb Hemoglobin

Hct Hematocrit

IU International unit

L Liter

μL Microliter

M Molar

mM Millimolar

mL Milliliter

No. Number

nm nanometer

PBS Phosphate buffer saline

PBMC Peripheral blood mononuclear cells

PC Phosphatidylcholine

PE Phosphatidylethanolamine

PF4 Platelet factor 4

PS Phosphatidylserine

RBC Red blood cell

RPM Revolution per minute

SD Standard deviation

SEM Scanning electron microscopy

w/v Weight per volume

WBC White blood cell

v/v Volume per volume