CHAPTER 1

INTRODUCTION

We know that the flow of electric current I in a simple series circuit with inductance L, resistance R and capacitance C is given by

$$L\frac{d}{dt}I(t) + RI(t) + \frac{1}{C}Q(t) = E(t)$$
(1.1)

where t is the time, Q is the total charge and E is the impressed voltage.

Since $I(t) = \frac{d}{dt}Q(t)$ then we also obtain the second order equation

$$L\frac{d^2}{dt^2}Q(t) + R\frac{d}{dt}Q(t) + \frac{1}{C}Q(t) = E(t).$$
 (1.2)

It is not difficult to find the solution Q(t) of the equation and the charge Q(t) is always an ordinary periodic function which is continuous for $0 \le t < T$.

But in this research , we study the case ${\cal E}(t)$ is replaced by the electromotive force

$$\sum_{k=o}^{m} c_k \delta_T^{(k)}(t)$$

where $\delta_T(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ with its derivatives is the periodic impulse function and c_k is a constant and $\delta_T^{(0)} = \delta_T$. Now we consider the equation

$$L \frac{d^2}{dt^2} Q(t) + R \frac{d}{dt} Q(t) + \frac{1}{C} Q(t) = \sum_{k=0}^m c_k \delta_T^{(k)}(t).$$
(1.3)

It is found that the solution of the equation (1.3) need not be an ordinary periodic function, it may be the periodic distribution that is the solution in the space \mathcal{P}'_T of periodic distribution whose period T. All type of those solutions depending on the values of m are as the following cases.

- (i) If $m \ge 2$ then there exists the solution of equation (1.3) that belong to the space \mathcal{P}'_T .
- (ii) If $0 \le m < 2$ then all solutions are ordinary periodic functions that are continuous for $0 \le t < T$ and it also follows that if $m \ge 1$ the current I(t)

is not an ordinary periodic function but it is the periodic distribution in the space \mathcal{P}'_T , that mean the current I(t) is periodic but it occurs impulse and its derivatives in every period T.

If m=0 then the current I(t) is continuous for $0 \leq t < T$ that means the current I(t) flows continuously for the time $0 \leq t < T$.

In solving the solution of the equation (1.3) that is the charge Q(t), we use the method of *T*-convolution of $e^{\alpha t} \delta_T^{(k)}$ with some periodic distribution to apply and also the finite Fourier transform is needed.

ลือสิทธิ์มหาวิทยาลัยเชียอใหม่ Copyright © by Chiang Mai University All rights reserved