
CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some notations and definitions and theorems

will be used in our research.

2.1 Distributions

2.1.1 The Space D of Testing Functions

Before we can describe distributions, we must define the testing functions,

on which distributions operate.Throughout this and the next section, the inde-

pendent real variable t will be assumed to be one-dimensional. When a function

has continuous derivatives of all orders on some set of points, we shall say that

the function is infinitely smooth on that set. If this is true for all points, we shall

merely say that the function is infinitely smooth. Moreover, whenever we refer to

a complex number or a complex-valued function, it is understood that the number

may be real or the function may be real-valued.

The space of testing functions, which is denoted by D, consists of all

complex-valued function φ(t) that are infinitely smooth with compact support,

where the support of continuous function φ(t) is now defined as U = {t ∈ R :

φ(t) 6= 0}. Then U is an open set. The support of φ denote by supp φ(t) and

define supp φ = U ( the closure of U ).

An example of a testing function in D is

ζ(t) =





0 | t| ≥ 1

exp 1
t2−1

| t| < 1 .

It can be shown that every derivative of this function exists and is zero at t = ±1.

More generally, then, this function has continuous derivatives of all orders for

every t, and they are all equal to zero for | t| ≥ 1 and supp ζ(t) = [−1, 1 ].
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2.1.2 Distributions

A functional is a rule that assigns a number to every member of a certain

set of functions. For our purposes, the set of functions will be taken to be the

space D and we shall consider functionals that assign a complex number to every

member of D. Denoting a functional by the symbol f , we designate the number

that f assigns to a particular testing function φ by 〈f, φ〉.
Distributions, which we shall describe in this section, are functionals on

the space D that possess, in addition, two essential properties. The first of these is

linearity. A functional f on D is said to be linear if, for any two testing functions

φ1 and φ2 in D and any complex number α, the following conditions are satisfied:

〈f, φ1 + φ2〉 = 〈f, φ1〉+ 〈f, φ2〉
〈f, αφ1〉 = α〈f, φ1〉 . (2.1)

The second property is continuity. A functional f on D is said to be

continuous if, for any sequence of testing functions {φν(t)}∞ν=1 that converges in

D to φ(t), the sequence of numbers {〈f, φν〉}∞ν=1 converges to the number 〈f, φ〉 in

the ordinary sense. If f is known to be linear, the definition of continuity may be

somewhat simplified. In this case, f will be continuous if the numerical sequence

{〈f, φν〉}∞ν=1 converges to zero whenever the sequence {φν}∞ν=1 converges in D to

zero.

Thus, we may state the following definition of a distribution defined over

the one-dimensional real euclidean space R1:

A continuous linear functional on the space D is a distribution.

The space of all such distributions is denoted by D ′ and D ′ is called the

dual space of D.

We can generate distributions by the regular function as follows. Let f(t)

be a locally integrable function (i.e., a function that is integrable in the Lebesgue

sense over every finite interval). Corresponding to such f(t), we can define a

distribution f through the convergent integral

〈f, φ〉 = 〈f(t), φ(t)〉 ,
∫ ∞

−∞
f(t)φ(t)dt (2.2)
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where φ is any testing function with compact support.

2.1.3 Example of Distribution

An example of a distribution that is not a regular distribution is the so-

called Dirac delta function δ, which is defined by the equation

〈δ, φ〉 , φ(0) . (2.3)

Clearly, (2.3) is a continuous linear functional on D. However, this distribution

cannot be obtained from a locally integrable function through the use of (2.2).

Indeed, if there were such a function δ(t), then we would have

∫ ∞

−∞
δ(t)φ(t)dt = φ(0) (2.4)

for all φ(t) in D. Moreover, we can conjecture a new singular distribution, the first

derivative δ(1)(t) of the delta functional, the following definition suggests itself:

〈δ(1)(t), φ(t)〉 , − φ(1)(0).

Next, an example of a distribution is so-called Heaviside unit step function

H(t):

H(t) =





0 for t < 0

1
2

for t = 0

1 for t > 0.

Then for any continuous function φ with compact support we have the result

∫ ∞

−∞
H(t)φ(t)dt =

∫ ∞

0

φ(t)dt. (2.5)

We use the symbol H to re present the mapping

H : φ →
∫ ∞

0

φ(t)dt

which is well defined by (2.5) for all continuous testing functions of compact sup-

port. This means that H represents something other than an ordinary function.
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2.1.4 Multiplication of Distribution by Infinitely Smooth Func-

tion

An operation that would be useful in analyses involving distributions would

be the multiplication of two arbitrary distributions. Unfortunately, it is not pos-

sible to define such an operation in general. It turns out that the product does

not always exist within the system of distributions. As an example, for the one-

dimensional variable t, let f(t) = 1/
√
| t|. Then, f(t) represents a regular dis-

tribution as well as a locally integrable function. Now, [f(t)]2 is a function of t

defined for all nonzero t. But it is not integrable over any interval that includes

the origin. This means that it cannot define a distribution through the expression

〈 1

| t| , φ
〉

=

∫ ∞

−∞

φ(t)

| t| dt

since the integral does not converge for every φ in D. In short, the product of

1/
√
| t| with itself does not exist as a distribution.

It is, however, possible to define the product of distributions in special

cases. For instance, if f and g are locally integrable functions over Rn and if their

product fg is also locally integrable, then the product of the corresponding regular

distributions exists as a regular distribution defined by

〈fg, φ〉 =

∫

Rn

f(t)g(t)φ(t) dt φ ∈ D.

A more important case arises when one of the distributions ψ is a regular

distribution corresponding to an infinitely smooth function. The product of ψ

with any distribution f in D′ exists and is defined by

〈ψf, φ〉 , 〈f, ψφ〉 φ ∈ D. (2.6)

For every φ inD the function ψφ is infinitely smooth everywhere and zero whenever

φ is zero. Hence, ψφ is also in D. Thus (2.6) defines that functional on D which

assigns to each φ in D the number 〈f, ψφ〉.
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2.1.5 The Derivative of Distribution

Distributions, on the other hand, always possess derivatives, and these

derivatives are again distributions. In order to explain this statement, we must,

of course, define what we mean by the derivative of a distribution. Let us restrict

ourselves for the moment to the case when the independent variable t has only one

dimension. An appropriate definition can be constructed by considering a regular

distribution f(t) generated by a function which is differentiable everywhere and

whose derivative is continuous. The derivative again generates a regular distribu-

tion f (1)(t) and, for each φ in D, an integration by part yields

〈f (1), φ〉 =

∫ ∞

−∞
f (1)(t)φ(t) dt

= −
∫ ∞

−∞
f(t)φ(1)(t) dt = 〈f,−φ(1)〉. (2.7)

Note that φ(1) is in D whenever φ is in D. Thus, a knowledge of f ( and, therefore,

of 〈f,−φ(1)〉 ) determines 〈f (1), φ〉. In other words, (2.7) defines f (1) as a functional

on D. This result is generalized in the following definition.

The first derivative f (1)(t) of any distribution f(t), where t is one-dimensional,

is the functional on D given by

〈f (1)(t), φ(t)〉 = 〈f(t),−φ(1)(t)〉 φ ∈ D.

At times, the conventional notation df/dt will also be used for the derivative of a

distribution defined over R1.

A simple illustration is provided by the first derivative of the delta func-

tional δ(1), which is defined by the equation

〈δ(1), φ〉 = 〈δ,−φ(1)〉 = −φ(1)(0)

and in general the p th derivative, δ(p), of the delta distribution is given by the

mapping

φ → 〈δ(p), φ〉 = (−1)pφ(p)(0).
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Example 2.1.1 The unit step function H(t) is the function that equals zero for

t < 0, 1/2 for t = 0, and 1 for t > 0. Its first distributional derivative is δ(t). For,

with φ in D,

〈H(1)(t), φ(t)〉 = 〈H(t),−φ(1)(t)〉

= −
∫ ∞

0

φ(1)(t) dt

= φ(0) = 〈δ(t), φ(t)〉.

On the other hand, the ordinary derivative of H(t) is the function that is zero

everywhere except at the origin, where it dose not exist.

The rule for the differentiation of the product of a distribution f and a

function ψ, which is infinitely smooth, is the same as that for the product of two

differentiable functions:

∂

∂ti
(ψf) = ψ

∂f

∂ti
+ f

∂ψ

∂ti
. (2.8)

This is established as follows. For any φ in D,

〈 ∂

∂ti
(ψf), φ

〉
=

〈
ψf,−∂φ

∂ti

〉
=

〈
f,−ψ

∂φ

∂ti

〉

=
〈
f,−∂(ψφ)

∂ti

〉
+

〈
f, φ

∂(ψ)

∂ti

〉

=
〈∂f

∂ti
, ψφ

〉
+

〈
f, φ

∂ψ

∂ti

〉

=
〈
ψ

∂f

∂ti
, φ

〉
+

〈
f

∂ψ

∂ti
, φ

〉
.

Let the partial differential operator Dk, when acting on a distribution, is

sufficiently specified by writing

Dk =
n∏

i=1

( ∂

∂ti

)ki

.

Two important properties of the differentiation of distributions are given by

Theorem 2.1.2 Differentiation is a continuous linear operation in the space D′ in

the following sense:

Linearity. For any two distributions f and g and for any number α,

Dk(f + g) = Dkf + Dkg
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and

Dk(αf) = αDkf.

Continuity. For any sequence of distributions {fν}∞ν=1 that converges in D′ to a

distribution f , the corresponding sequence of partial derivatives {Dkfν}∞ν=1 also

converges in D′ to Dkf

See [6] for more details.

Example 2.1.3 Let f(t) be a bounded function on R1 that is piecewise-continuous

and has a piecewise-continuous first derivative in the following way. The points tν

(ν = . . . ,−2 ,−1 , 0 , 1 , 2 , . . . ; tν < tν+1), at which f(t) or f (1)(t) is discontinuous

or f (1)(t) fails to exist, are finite in number in every finite interval. At each such

point f(t) has at most a finite jump

4f , f(tν+) − f(tν−) (2.9)

and its right-hand and left-hand derivatives both exist. Then we may define the

continuous function fc(t) through

f(t) , fc(t) −
−∞∑

ν=−1

4fν H(tν − t) +
∞∑

ν=0

4fν H(t− tν). (2.10)

The infinite series certainly converges in D′, since in every finite interval it pos-

sesses only a finite number of nonzero terms. By differentiating term by term and

invoking the result developed in Example (2.1.1), we obtain

f (1)(t) = f (1)
c (t) +

∞∑
ν=−∞

4fν δ(t− tν) (2.11)

where f
(1)
c (t) is a locally integrable function. Here again, distributional differentiation

generates a delta functional at each ordinary discontinuity.

2.1.6 The Convolution Applied to Ordinary Linear Differential

Equations with Constant Coefficients

Let f(t) and g(t) be two continuous functions with bounded support. Their

convolution produces a third function h(t), which is denoted by f ∗ g and defined
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by

h(t) , f(t) ∗ g(t) ,
∫ ∞

−∞
f(τ)g(t− τ) dτ.

Thus the rule that defines the convolution f ∗ g of two distributions f(t) and g(t)

is suggested by this expression to be

〈f ∗ g, φ〉 , 〈f(t), 〈g(τ), φ(t + τ)〉〉.

Example 2.1.4 The convolution of the delta functional with any distribution yields

that distribution again; the convolution of the mth derivative of the delta func-

tional with any distribution yields the mth derivative of that distribution. In

symbols,

δ ∗ f = f

δ(m) ∗ f = f (m). (2.12)

Note that these convolutions are valid for every distribution f in D′ because δ(m)

has a bounded support. The more general expression (2.12) may be justified as

follows. For every φ in D,

〈δ(m) ∗ f, φ〉 = 〈f ∗ δ(m), φ〉 = 〈f(t), 〈δ(m)(τ), φ(t + τ)〉〉
= 〈f(t), (−1)mφ(m)(t)〉 = 〈f (m)(t), φ(t)〉.

An important consequence of (2.12) is that every linear differential oper-

ator with constant coefficients can be represented as a convolution. That is, with

the aν being constants, we have

anf (n) + an−1f
(n−1) + . . . + a0f

= (anδ
(n) + an−1δ

(n−1) + . . . + a0δ) ∗ f.

Note that this statement could not be made if we restricted ourselves to the

ordinary convolution of functions.

Let L denote the general differential operator of the form

L , an
dn

dtn
+ an−1

dn−1

dtn−1
+ . . . + a1

d

dt
+ a0
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where the aν (ν = 1 , 2 , . . . , n) are constants, an 6= 0, and n ≥ 1. We wish to

resolve the equation

Lu = g (2.13)

where g is a known distribution in D′
R and u is unknown but also required to be

in D′
R and (2.13) may be written as a convolution equation:

(Lδ) ∗ u = g

Lδ = anδ
(n) + an−1δ

(n−1) + . . . + a1δ
(1) + a0δ. (2.14)

Thus, the technique developed for the convolution algebra D′
R may be applied

here and, as we have shown, the problem becomes simply that of finding in D′
R

an inverse for Lδ.

Theorem 2.1.5 The distribution Lδ, given by (2.14) with the aν (ν = 0, 1, . . . , n; n ≥
1) being constants and an 6= 0, has an inverse in D′

R. This inverse is H(t)y(t),

where y(t) is that classical solution of the homogeneous equation Lu = 0 which

satisfies the initial conditions

y(0) = y(1)(0) = . . . = y(n−2) = 0 and y(n−1)(0) =
1

an

.

See [6] for more details.

2.2 Periodic Distribution

2.2.1 The Space P T of Periodic Testing Functions

An ordinary function f(t) is said to be periodic if there exists some real

positive number T such that f(t) = f(t − T ) for all values of t and T is called a

period of f(t). It follows that, if a function is periodic, it will possess an infinity of

periods, since nT (n = 1, 2, 3, . . . ) will be a period whenever T is a period. Note

that by our definition all periods are positive numbers.

A function θ(t) will be called a periodic testing function if it is periodic

and infinitely smooth. The space of all such periodic testing functions having the
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common period T (T being a fixed positive number ) will be denoted by P T and

P T is a linear space.

Any testing function φ in D generates a unique testing function θ in P T

through the expression

θ(t) =
∞∑

n=−∞
φ(t− nT ). (2.15)

Actually, over any bounded t interval there are only a finite number of nonzero

terms in this summation because φ has a bounded support. Thus, we may

differentiate term by term to get

θ(k)(t) =
∞∑

n=−∞
φ(k)(t− nT ) k = 1, 2, 3, . . . . (2.16)

Another type of function that we shall make use of is the so-called unitary

function. A function ξ(t) is said to be unitary if it is an element of D and if there

exists a real number T for which

∞∑
n=−∞

ξ(t− nT ) = 1 (2.17)

for all t. The space of all functions that are unitary with respect to some fixed

real number T will be denoted by uT .

Clearly, if θ is in P T and ξ is in uT , then ξθ is in D. Each θ can be related

to ξθ according to (2.15) because the periodicity of θ may be employed to write

∞∑
n=−∞

ξ(t− nT )θ(t− nT ) = θ(t)
∞∑

n=−∞
ξ(t− nT ) = θ(t). (2.18)

This shows that every θ in P T can be generated through (2.15) from some φ in

D.

2.2.2 The Space P ′
T of Periodic Distribution

A periodic distribution is defined in the same way as is a periodic function.

In particular, the distribution f is said to be periodic if there exists a real positive

number T such that

f(t) = f(t− T )
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for all t. This means, of course, that for every φ in D

〈f(t), φ(t)〉 = 〈f(t− T ), φ(t)〉 (2.19)

T is called a period of f(t). As with ordinary functions, a distribution will have

an infinity of periodic nT (n = 1, 2, 3, . . . ) so long as it has at least one period T .

Obviously, every constant distribution is a periodic distribution and each positive

number is one of its periods.

Now, let T be a given (fixed) positive number. The space of all periodic

distributions possessing T as one of its periods will be denoted by P ′
T .

Every element f of P ′
T can also be identified as a continuous linear func-

tional on the space P T . The (complex) number that f assigns to any θ in P T will

be denoted by the dot product f ¯ θ in order to avoid confusion with the number

〈f, φ〉 that f assigns to any φ in D. This number f ¯ θ is defined by

f ¯ θ , 〈f, ξθ〉 (2.20)

where ξ is any unitary function in uT .

As usual, f is said to be a linear functional on the space P T if, for any θ1

and θ2 in P T and for any two complex numbers α and β, we have

f ¯ ( αθ1 + βθ2 ) = α(f ¯ θ1) + β(f ¯ θ2)

Similarly, f is said to be a continuous functional on P T if, for any sequence {θν}∞ν=1

that converges in P T to θ, the sequence of number {f ¯ θν}∞ν=1 converges to the

number f ¯ θ .

Theorem 2.2.1 If f is a periodic distribution with period T , then (2.20) defines

it as a continuous linear functional on P T .

See [6] for more details.

Any φ in D will generate a θ in P T through the expression (2.15).Then,

by knowing f as a functional on P T , we define the number 〈f, φ〉 by

〈f, φ〉 , f ¯ θ. (2.21)
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Theorem 2.2.2 If f is a continuous linear functional on P T and if θ and φ are

related by (2.15), then (2.21) defines f as a periodic distribution with period T .

See [6] for more details.

Example 2.2.3 Let

δT (t) ,
∞∑

n=−∞
δ(t− nT ) T > 0.

Clearly, δT is in P ′
T . For θ in P T and ξ in uT , we have

δT ¯ θ = 〈δT , ξθ〉 = 〈
∑

n

δ(t− nT ), ξ(t)θ(t)〉

=
∑

n

ξ(nT )θ(nT ) = θ(0)
∑

n

ξ(nT ).

Since
∑

n ξ(nT ) = 1, we have established that

δT (t)¯ θ(t) = θ(0).

A similar analysis shows that

δT (t− τ)¯ θ(t) = θ(τ).

Example 2.2.4 More generally, consider

δ
(k)
T (t) =

∞∑
n=−∞

δ(k)(t− nT ) k = 0 , 1 , 2 , 3 . . . .

This is also in P ′
T and, as before, we have

δ
(k)
T ¯ θ =

∞∑
n=−∞

(−1)k dk

dtk
[ξ(t)θ(t)]

∣∣∣∣∣
t = nT

=
∞∑

n=−∞
(−1)k

k∑
p=0

(
k

p

)
ξ(p)(nT ) θ(k−p)(nT )

= (−1)k

k∑
p=0

(
k

p

)
θ(k−p)(0)

∞∑
n=−∞

ξ(p)(nT ).

In view of (2.20) and (2.15) of the preceding section, this equation yields

δ
(k)
T ¯ θ(t) = (−1)kθ(k)(0) k = 0 , 1 , 2 , 3 . . .

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



15

2.2.3 T-Convolution

Let f and g be arbitrary distribution in P ′
T , ξ and κ arbitrary unitary

functions in uT , and θ any testing function in P T . Then, the T -convolution of f

with g, which we shall denote by f∆ g, is the functional on P T defined by

(f∆ g)¯ θ , f(t)¯ [g(τ)¯ θ(t + τ)]

= f(t)¯ 〈g(τ), κ(τ)θ(t + τ)〉. (2.22)

As a consequence of Theorem 2.7− 2[6],

〈g(τ), κ(τ)θ(t + τ)〉

is a function of t that is infinitely smooth. Also, it is clearly periodic with period

T . Hence, it is in P T . Thus, definition (2.22) may be replaced by the equivalent

definition

(f∆ g)¯ θ , 〈f(t), 〈g(τ), ξ(t)κ(τ)θ(t + τ)〉〉
= 〈f(t)⊗ g(τ), ξ(t)κ(τ)θ(t + τ)〉. (2.23)

Theorem 2.2.5 The T -convolution of two distributions in P ′
T yields a distribution

in P ′
T . In other words, the space P ′

T is closed under T -convolution.

See [6] for more details.

Moreover, we have shown that in this special case

f∆ g =

∫ a+T

a

f(τ)(t− τ)dτ

the right-hand side again being a locally integrable periodic function of period T .

This is just like an ordinary convolution except that now the integration is over

a finite interval of length T . This is the reason why T -convolution is also called

finite convolution.

Example 2.2.6 Consider

δT (t) =
∞∑

n=−∞
δ(t− nT )
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the distribution in P ′
T that was discussed in Example (2.2.3). If f is also in P ′

T

and θ is any element in P T , then

(f∆ δT )¯ θ = f(t)¯ [δT (τ)¯ θ(t + τ)] = f(t)¯ θ(t)

and therefore

f∆ δT = f.

Thus, δT is the unit element in the T -convolution algebra, which we shall describe

later on. In accordance with the Theorem 11.4− 3[6] , we may also write

f (1) =
d

dt
(f∆ δT ) = f∆ δ

(1)
T

and, more generally,

f (k) = f∆ δ
(k)
T k = 0, 1, 2, . . . . (2.24)

T -convolution is clearly a linear operation in the sense that, if f , g, and h

are in P ′
T and if α and β are real numbers, then

f∆ (αg + βh) = α(f∆ g) + β(f∆ h)

By virtue of this and (2.24) any linear differential expression with constant

coefficients can be represented as a T -convolution so long as we restrict ourselves

to the distributions in P ′
T :

anf
(n) + an−1f

(n−1) + . . . + a0f

= (anδ
(n)
T + an−1δ

(n−1)
T + . . . + a0δT )∆ f, f ∈ P ′

T .

2.2.4 The T-Convolution Algebra

A T -convolution equation is an equation of the form

f∆ u = g (2.25)

where f and g are given elements of P ′
T and u is an unknown element that is also

required to be in P ′
T . The technique that was described in Sec.6.2[6] for solving
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a convolution equation in some convolution algebra can be applied here to solve

(2.25). As before, the inverse of an element f is an element f∆−1 of P ′
T such that

f∆−1∆ f = δT . (2.26)

Theorem 2.2.7 Let f be a given distribution in P ′
T . A necessary and sufficient

condition for (2.25) to have at least one solution in P ′
T for every g in P ′

T is that f

possess an inverse f∆−1 in P ′
T . When f dose have an inverse in P ′

T , this inverse

is unique and (2.25) possesses a unique solution in P ′
T given by

u = f∆−1∆ g (2.27)

.

See [6] for more details.

2.2.5 The Finite Fourier Transformation

Our purpose in this section is to show that a distribution f is periodic and

of period T if and only if it has the series expansion

f(t) =
∞∑

ν=−∞
Fνe

iνωt ω =
2π

T
(2.28)

where the constant coefficients Fν are given by

Fν =
1

T
f(t)¯ e−iνωt (2.29)

and have the property of being of slow growth. This latter property is defined as

follows. A sequence of constant {Fν}∞ν=−∞ is said to be of slow growth if there

exist a constant M and an integer k such that |Fν | ≤ M | ν|k for all nonzero ν. The

series (2.28) is called the Fourier series of f(t), and the constants Fν are called

the Fourier coefficients of f(t). On the other hand, one can apply the Fourier-

coefficients formula (2.29) to any distribution in P ′
T to convert it into a sequence

of complex numbers. This defines the direct finite Fourier transformation FT ,

which is, therefore, a one-to-one mapping of the space P ′
T onto the space of se-

quence of numbers of slow growth. The inverse finite Fourier transformation F−1
T
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is defined in turn by the Fourier series representation (2.28). The symbolism for

these transformations is

FT f = {Fν}∞ν=−∞

and

F−1
T {Fν}∞ν=−∞ = f

where f is an element of P ′
T and {Fν}∞ν=−∞ is the corresponding sequence of

Fourier coefficients.

Theorem 2.2.8 If f and g are in P ′
T and if Fν and Gν (ν = 0 ,±1 ,±2 . . .)

are their respective Fourier coefficients, then the Fourier coefficients of f∆ g are

TFνGν.

See [6] for more details.

An important application of the finite Fourier transformation is in the

resolution of the T -convolution equation

f∆ u = g

where f and g are given elements of P ′
T and the solution u is also required to be

in P ′
T . This problem can be solved quite simply if f has a T -convolution inverse

f∆−1, which is by definition an element of P ′
T that satisfies the equation (2.26) ,

f∆ f∆−1 = δT .

By applying the direct finite Fourier transformation to (2.26), we obtain the fol-

lowing infinite set of equations, wherein the Xν denote the Fourier cofficients of

f∆−1 :

TFνXν =
1

T
ν = 0 ,±1 ,±2 , . . . . (2.30)

All these equations can be satisfied only if every Fν is different from zero. In this

case, we can divide both sides of (2.30) by TFν and then apply the inverse finite

Fourier transformation to obtain

f∆−1 = F−1
T {Xν}∞ν=−∞ =

1

T 2
F−1

T

{ 1

Fν

}∞
ν=−∞

=
1

T 2

∞∑
ν=−∞

1

Fν

eiνωt. (2.31)
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However, the right-hand side will have a sense if {1/Fν}∞ν=−∞ is a sequence of slow

growth.

Under these conditions on the Fν , we can employ Theorems 2.2.7 and

2.2.8 to obtain a solution to (2.25) for any g in P ′
T by using the finite Fourier

transformation. Indeed, with {Gν}∞ν=−∞ = FT g, the solution to (2.25) is

u(t) = F−1
T

{ Gν

TFν

}∞
ν=−∞

=
1

T

∞∑
ν=−∞

Gν

Fν

eiνωt (2.32)

Thus, we have arrived at

Theorem 2.2.9 The T -convolution equation (2.25) has a unique solution in P ′
T

for every g in P ′
T if none of the Fourier coefficients Fν of f are zero and if

{1/Fν}∞ν=−∞ is a sequence of slow growth. In this case, the solution is given by

(2.32).

See [6] for more details.

On the other hand, if some of the Fν are zero, then f∆−1 dose not exist,

since there is no set of Xν for which all the equations (2.30) will be satisfied. This

means that (2.25) will not have a solution for every g in P ′
T . However, for certain

g, (2.25) will have a solution and, in fact, an infinite number of solutions.

2.2.6 The T -Convolution Applied to Ordinary Linear Differential

Equations with Constant Coefficients

In this section, the theory of periodic distributions will be applied to solve

in P ′T ordinary linear differential equations with constant coefficients. Consider

the differential equation

anu
(n) + an−1u

(n−1) + . . . + a0u = g an 6= 0 , n > 0 (2.33)

or, equivalently,

(anδ
(n)
T + an−1δ

(n−1)
T + . . . + a0δT ) ∆ u = g
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where the ak ( k = 0 , 1 , . . . , n ) are constants, g is a given element of P ′T , and

u is an unknown element in P ′T that we seek. The finite Fourier transformation

converts (2.33) into

[an(iνω)n + an−1(iνω)n−1 + . . . + a0] Uν = Gν

ω =
2π

T
; ν = 0 ,±1 ,±2 , . . . . (2.34)

If it turns out that none of the roots of the polynomial

P (ζ) = anζn + an−1ζ
n−1 + . . . + a0 (2.35)

coincide with any of the values iνω = iν2π/T (ν = 0 ,±1 ,±2 , . . .), then each

Uν is uniquely determined by (2.34). In this case {1/P (iνω)}∞ν=−∞ is clearly a

sequence of slow growth. Thus, according to Theorem 2.2.9 the unique solution

to (2.33) is given by the following Fourier series :

u(t) =
∞∑

ν=−∞

Gν

P (iνω)
eiνωt. (2.36)

Equation (2.33) can also be solved directly in the T -convolution algebra

P ′T by using the T -convolution inverse of

f , anδ
(n)
T + an−1δ

(n−1)
T + . . . + a0δT (2.37)

instead of using the finite Fourier transformation. Let us first factor the polynomial

(2.35) into the form

P (ζ) = an(ζ − γ1)(ζ − γ2) . . . (ζ − γn)

where some or all of the roots γk may be equal to each other. Certainly, f can be

written in the form

f = an(δ
(1)
T − γ1δT ) ∆ (δ

(1)
T − γ2δT ) ∆ . . . ∆ (δ

(1)
T − γnδT ).

Moreover, still assuming that none of the γk equal iνω (ν = 0 ,±1 ,±2 , . . .),

one can easily verify that the T -convolution inverse of δ
(1)
T − γkδT is the periodic
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function hk defined by the equations

hk(t) , eγkt

1− eγkT
0 ≤ t < T

hk(t) , hk(t− T ) −∞ < t < ∞. (2.38)

The T -convolution inverse of (2.37) is

f∆−1 =
1

an

h1 ∆ h2 ∆ . . . ∆ hn

and, consequently, the solution to (2.33) is found to be

u =
1

an

h1 ∆ h2 ∆ . . . ∆ hn ∆ g. (2.39)

Let us compare these two technique for solving (2.33). The first method

is computationally easy to perform except that the evaluation of the Fourier

coefficients Gν is a possible stumbling block. Moreover, the solution is rendered

as a Fourier series (2.36). The second method yields the solution in a closed form

(2.39), but it requires the determination of the roots of the polynomial (2.35) and

the evaluation of n T -convolutions.

2.3 Electric Circuit Problems

In this section we consider the application of differential equations to series

circuits containing (1) an electromotive force, and (2) resistors, inductors, and ca-

pacitors. We assume that the reader is some what familiar with these items and so

we shall avoid an extensive discussion. Let us simply recall that the electromotive

force (for example, a battery or generator) produces a flow of current in a closed

circuit and that this current produces a so-called voltage drop across each resistor,

inductor, and capacitor. Further, the following three laws concerning the voltage

drops across these various elements are known to hold:

1. The voltage drop across a resistor is given by

ER = Ri, (2.40)

where R is a constant of proportionality called the resistance, and i is the current.
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2. The voltage drop across an inductor is given by

EL = L
di

dt
, (2.41)

where L is a constant of proportionality called the inductance, and i again denotes

the current.

3. The voltage drop across a capacitor is given by

EC =
1

C
q, (2.42)

where C is a constant of proportionality called the capacitance and q is the in-

stantaneous charge on the capacitor. Since i = dq/dt, this is often written as

EC =
1

C

∫
i dt.

The fundamental law in the study of electric circuits is the following:

Kirchhoff ’s Voltage Law (Form 1 ). The algebraic sum of the instantaneous volt-

age drops around a close circuit in a specific direction is zero.

Since voltage drops across resistors, inductors, and capacitors have the

opposite sign from voltages arising from electromotive forces, we may state this

law in the following alternative form:

Kirchhoff ’s Voltage Law (Form 2 ). The sum of the voltage drops across resistors,

inductors, and capacitors is equal to the total electromotive force in a closed

circuit.

Let us apply Kirchhoff’s law to the series circuit. Letting E denote the

electromotive force, and using the law 1, 2, and 3 for voltage drops that were given

above, we are led at once to the equation

L
di

dt
+ R i +

1

C
q = E. (2.43)

This equation contains two dependent variables i and q. However, we recall that

these two variables are related to each other by the equation

i =
dq

dt
. (2.44)
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Using this we may eliminate i from Equation (2.43) and write it in the form

L
d2q

dt2
+ R

dq

dt
+

1

C
q = E. (2.45)

Equation (2.45) is a second-order linear differential equation in the single depen-

dent variable q. On the other hand, if we differentiate Equation (2.43) with respect

to t and make use of (2.44), we may eliminate q from Equation (2.43) and write

L
d2i

dt2
+ R

di

dt
+

1

C
i =

dE

dt
. (2.46)

This is a second-order linear differential equation in the single dependent variable

i.

Thus we have the two second-order linear differential equation (2.45) and

(2.46) for the charge q and current i, respectively. Further observe that in two

very simple cases the problem reduces to a first-order linear differential equation.

If the circuit contains no capacitor, Equation (2.43) itself reduces directly to

L
di

dt
+ R i = E ;

while if no inductor is present, Equation (2.45) reduces to

R
dq

dt
+

1

C
q = E .
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