CHAPTER 3
MAIN RESULTS

In this chapter we studied some property of e"‘té(Tk) and used its to inves-

tigate the behavior of charge and current in the electrical circuit.

3.1 Some Properties of eo‘t5(Tk)

Property 3.1.1 eo‘t&}k) = (D — a)*ér where D = 4 and 6“"/5 is a periodic dis-

tribution of order k with period T
Proof. By the definition of periodic distribution and dr,

't @ 0(t) = 65 © e*'o(t)

=570/~ ’“Ekj(y) )6()*

V=

for every 6 € Pr and also e*0(t) € Py where Pr is the space of periodic function

of infinitely differentiable with period 7. Hence

=0 (5)ars-10)
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= (D - Ck)kéT © (9,

5 @ (1)

where D = E It is follow that

eaté(Tk) = (D — a)*ér.

Since 7 is a periodic distribution, hence so is (D —a)*dr and it follows that eat5§f“ )

is a periodic as required. Now
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this means that eat(Sgg ) is a finite linear combination of Dirac-delta periodic distri-

at 58 ig of

bution and its derivative up to order k. Hence, by [6] we obtain that e

order k with a point support {n7'}5° O

Property 3.1.2 (The T-convolution of eo‘tégﬂk) with some periodic distributions)

(1) <e°‘t5(Tk)> Af =(D—a)*f where D =<4 and f is some periodic distributions
in the space P} of periodic distributions.

(2) |(etof)) A (etof ) AL A (et )| AF = (D= (D= as) ...
(D — )k f
where aq, o, ..., q, are compler constants, D = % and ky, ko, ..., k, are

positive integers and f &€ Ph.

Proof. (1) By Property 3.1.1, we have (eatéékv Af = (D — a)korAf,

thus we obtain

GLAINE Af

i<_1)y (i) o)

v=0

o (%A
(8#1)
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<

= (D —a)"f, since 5(Tk)Af — fR),

(2) Since eait&}ki) is a periodic, then we can take the finite Fourier transform to
the convolution (ea1t5;k1)> A (eaQté(Tk2)> AN (ea”té(Tk")>, that is
Frf (o) A (emtsf?) A A (emtof)) |

1 . , )
— T <€a1t(5¥€1) @ efwwt> (€a2t6¥€2) @ efwwt) . (eantégn) @ efwwt>

1
= T(z‘z/w — o) (ivw — ax)*2 L (ivw — ap)Pr

Take the inverse finite Fourier transform, we obtain
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(et} A (emtof) AL A (extoff)

1
- fT_l{f(i’/w — o) (ivw — ap)*2 . (ivw — an)k"}
= Z f(il/w — o))" (ivw — a)®2 . (fvw — ay,)Fr et
= (D—ay,) Z T(iuw — o) (ivw — ap)*2 . (ivw — ay,)Fn et
= (D—ay,)? Z T(iyw — )" (ivw —a)®? . (ivw — ay,)Pn T 2e™

k > 1 X \ . kn_1 tvwt

= (D —ay,)™ Z T(WW —aq)(ivw — @)™ .. (Ivw — 1) e
= (D—a)"(D—ay)*.. (D —a,)*™ 2_: Tew“’t

where 4 >°°7 ¢! = §; [6] and similarly, as Property 3.1.1,

[(ealt(s;’“”) A <ea2f(s(T’“2>> A A (eant(sg’wﬂ Af

That completes the proof. 0

Corollary 3.1.3 The inverse of (e“’ltégpl))A(e“’Qtéé})) is

1 ewlt ewgt

(3.1)

Wy —wy |1 —etT ~ 1 —gweT
Proof. Let f(t) = (e"’ltég}))A(e“’Qtd(Tl)) for 0 <t < T, we have finite Fourier

transform F), of f(t) is given by

F, = = (ivw —w)(ivw — wy).

el

By (2.34) we can write the inverse fA71(t) of f(t) for 0 < t < T, is of the form
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Fourier series

[e.e]

1 —
A-1 — = ivwt
f (t) - T2 S~ F,/ €
* % 3.2
Vz_:oo T(w — ivw)(we — ivw) c (32)

We will show that by taking the finite Fourier transform to (3.1), that is

1 ew1t ewgt
#i{ : j
Vwr— ws L —enT 1 — e“’?T}

o 1 1 wit —ivwt 1 wat —ivwt
= Tl =) _1_6w1T6 ©e T et © ©e }
1 e T=iveT _ g T—ivwT _ |
- T(wy —ws) | (1— e T)(wy —ivw) (1 — e%2T)(wy — il/w)]
I e R 1
T T(w —ws) |wy— i wy — z'l/w]
1

T(w —ivw)(we — ivw)
since the finite Fourier transform of (3.1) is Fourier coefficient of (3.2).This com-

pletes the proof. O

3.2 The Application of eo‘t5(Tk)

Recall that the equation

m

d? 1
L5500 + REQ() + £ (0= ad() (3.3)
k=0
Now (3.3) can be written as the form
R 1
2 (k
(D?*+ = T D++5 & Z ceo

where D = dt, or

R JE 1 R [R 1 LS~ )
Do (- ) (-2 E - ) aw = 13 el
( o TV LC)>< =3z ~ Vi LC>>Q<) Lk_ockT()
For simplicity, let

and wgz—i—
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By applying the Property 3.1.2(2) to (3.3) with ky = ko = 1 and oy = wq, ag = wy

then (3.3) can be written as the form

() A (e210f") | aQe) = %Zm: o (t). (3.4)

Actually, e'* and e“2" are the solutions of the homogenous equation of (3.3) with
the right-hand side vanishes.

Now we can find the charge Q(t) in (3.4) by convolving both sides of (3.4)
with the inverse of (e“’ltég} )> A (e“’2t6(T1 )). By the Corollary 3.1.3 the inverse of

(e“’lté(Tl)> A (e“Qté(Tl)> is
1 ewlt ewgt
w1 —ws {1 —eaT 1 ew2T1 '

ewlt ewzt
I—e*1T — 1—ewaT

w1 —w2

Now convolve both sides of (3.4) by —* [ ], we then obtain the

charge

1 et) [ [ex (k
Q(t) N\ W1 — Ws |:1 — ew1T 1— erT} < chfs ) (35)

which is the solution of (3.3).

Before convolving by >, ck&}k) (t) on equation (3.5). We will consider
some technique of 5;’6) (t)Ae*t for 0 <t < T. Let f(t) = e“* where w is a complex
constant and 0 < ¢ < T, by (2.9) we obtain

Af = f(0) = f(T)

= 1 — T,
Then, by (2.11) and v = n, t, = nT, we have

FO@) = wet + (1 — e Z(St—t

= we 1—e Z(St—nT
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for 0 <t < T. Similarly for second- derivative
A1) = 6PAe = W2t + (1 — D)0y + wir)

and go on to order k-derivatives. Then we obtain the formula of convolving e**
by 5(Tk) for 0 <t < T, that is

k—
5;]“)A€wt: k wt 1—6 Z r(sklr
=0

By computing directly

m k-1
1 1 k—1-r)
t) = k _wit r6( t
A Lwr — wa)(1 — e ) chw \ L(wy — ws) ;;CkWI ! "
1 m 1 m  k—1
B k wgt B r(s(k’ 1-r) t
i L(Wl — wy)(1 — ew2T) kz% Gpupe L(wy — wy) kz:; ;Ck% T ®)
m ewt t L ewgt
g L(wy — wy) Z%Ck {w l—enT 27— e“?T]
m k—1
e Sy e )
wl ~ w2 k=1 r=0

Now consider the following cases.

(1) If m > 2 then the right-hand side of (3.6) contains the Dirac-delta
periodic distribution and its derivatives. That means that the charge Q(¢) is not
an ordinary periodic function but it is the periodic distribution in the space P.

(2) f0<m <2 (m=0,1) then for m = 1, from (3.6) we obtain

o ewlt ew2t
Q(t) N wnT woT
L(wy —ws) |1 — e 1 —ew2
c1 ewlt 60.1215
J— w —
* L(wy — wy) [wl 1—enT 21— e“’QT]

That Q(t) is the periodic function for 0 <t < T with period 7. For m = 0, then

w1t wat
Co e e
®) L(wy — wo) {1 —en T 1— G‘UZT:|

and also is the periodic function for 0 < ¢ < T with period T. Now consider the
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current /(t), we know that I(t) = 4 Q(t), hence by (3.5)

1 d eLU1t euJQt 1 m i
I(t) = - - AES 5
) w; —wy dt L—emT 1_ew2T} (L;CkT()>
1 ewit 1 — e T ewa2t 1 — ew2T
{ 54

w1 + (ST — W9 N
w1 — Wa 1 — ew1T 1 — ewniT 1 — ewaT 1 _ ewnT

1 — .
A (E > cké(T)(t))
k=0
1 geuh et L&~ )
N Wi — Wo |:L¢J1 1 —ewniT . w21 _ eo.QT:| A (Z ch’dT (t) 1

By computing directly,

m m k-1
w1 k wit Wi ro(k=1-r)
1(t) = cpwy et + ————— Crw1 0. t
(t) L(wl—wg)(l—ewlT)kZ:O kWl L(wl—wg);; oWy O (t)
¢ m k-1
—W9 k wot —Wo r o (k—1—7)
+ CrWsy € B e Crw ) ¢
L(wl - CU2)(1 — ew2T> kz:; 2 L((Ul _ w2) kz:; gt 29T ( )
o 1 m fi1 6w t o ert
— L(w1 — WZ) ch |:CU1 1 ewlT 2 1 — 6"’)2T
k=0
1 m k-1
-+ en [t — el 5(k—1—r) " 57
L(wl—WQ);TZO’“[l 3] or (t) (3.7)

Now consider the following case.

(1) If m > 2 then we see that the current I(¢) contains the Dirac-delta
periodic distribution and its derivatives, that means I(¢) is not an ordinary periodic
function but it is the periodic distribution in the space P}. It follows that the
current /(t) is not periodic continuous and it occurs impulse and its derivatives in
every period T

(2) If0<m <2 (m=0,1) then for m =1, (3.7) becomes

Co ewlt euJ2t
I(t) = _
®) L(w; — wo) lwl 1 — el 27 erT}

w1t

C]. 2 e 2 (& Cl
- —or(t).
+ L(wl — u}2) |:w1 1 — ew1T Wa 1— erT:| + L T( )

wat




31

It follows that the current I(¢) is the same the case (1). For m = 0, (3.7) becomes

o ewﬂf eo.)Qt :|

I(t) = —Wy————
( ) L(w1 = WQ) |:W11 — ew1T WQl — ew2T

R _ 1 i
coe %t ( R R? a ) e< & LC)t
T Jrr_ar |\ 2L V42 IC
R2.4 ~

Qlt

(/R 1 i
+ Coe™ 2L <R R2 1) e ( = Lc)t
L
JR2— 4L |

by substitution for ws,ws.

That I(t) is periodic function for 0 < ¢ < T" with period T'. It follows that the

current [ (t) flows periodic continuously for the period T



