
CHAPTER 2

PRELIMINARIES

In this chapter, we give some definitions, notations and theorems that will

be used in the later chapters. Throughout this thesis, our scalar field is the field

of real numbers R and we let N denote the set of all natural numbers.

2.1 Sequences and Series

Definition 2.1.1 Let (xn) be a sequence. We say that (xn) approaches the limit L

(as n approaches to infinity), if for any ε > 0, there is a positive integer Nε such

that

|xn − L| < ε for all n ≥ Nε. (2.1)

We write lim
n→∞

xn = L or xn → L as n →∞.

Definition 2.1.2 If (xn) is a sequence having the limit L, we say that (xn) is a

convergent sequence. If (xn) is not convergent, we say that (xn) is divergent.

Definition 2.1.3 Let
∑∞

n=1 an be a series of scalar with partial sum Sn = a1 +a2 +

...+ an(n ∈ N), if the sequence (Sn) converge to S, we say that the series
∑∞

n=1 an

converges to S. If (Sn) diverges, we say that
∑∞

n=1 an diverges.

2.2 Metric Spaces and Normed Spaces

Definition 2.2.1 A metric space is a pair (X, d), where X is a nonempty set and

d a metric on X, that is d : X × X → R is a function satisfies the following

conditions:

(M1) d(x, y) ≥ 0 for all x, y ∈ X

(M2) d(x, y) = 0 if and only if x = y for all x, y ∈ X

(M3) d(x, y) = d(y, x) for all x, y ∈ X

(M4) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Definition 2.2.2 A sequence (xn) in metric space (X, d) is said to converge or to

be convergent if there is an x ∈ X such that lim
n→∞

d(xn, x) = 0, x is called the limit

of xn and we write lim
n→∞

xn = x, or simply xn → x.

Definition 2.2.3 A sequence (xn) in a metric space (X, d) is called Cauchy sequence

if for every ε > 0 there exists Nε ∈ N such that

d(xn, xm) < ε

for all n,m ≥ Nε.

Definition 2.2.4 A metric space (X, d) is said to be complete if every Cauchy

sequence in X is convergent.

Definition 2.2.5 Let X be a linear space (or vector space), a norm on X is a

real - valued function ‖ · ‖ which satisfies the following conditions:

(N1) ‖x‖ ≥ 0 for all x ∈ X

(N2) ‖x‖ = 0 if and only if x = 0

(N3) ‖αx‖ = |α|‖x‖ for all α ∈ R and x ∈ X

(N4) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A linear space X equipped with a norm ‖.‖ is called a normed linear space.

Every normed linear space gives rise to the metric d(x, y). It is called the metric

induced by norm.

For x0 in X and r > 0 the set B(x0, r) = {x ∈ X : ‖x− x0‖ < r} is called

the open ball of radius r and center x0. Correspondingly, the set B(x0, r) =

{x ∈ X : ‖x− x0‖ ≤ r} is called the closed ball.

Definition 2.2.6 Let x∈ Rn (n=1,2,. . . ). For x=(x1, . . . , xn) ∈ Rn, let

‖x‖1 = Σn
i=1|xi|,

‖x‖∞ = max{|xi|, . . . , |xn|},
‖x‖p = (Σn

i=1|xi|p)
1
p , (p > 1).

Definition 2.2.7 A Banach space is a complete normed linear space.
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Definition 2.2.8 A subset D of a linear space X is called convex if

λx + (1− λ)y ∈ D for all x, y ∈ D and all λ ∈ [0, 1].

2.3 Matrices and Linear Transformations

The set of m× n matrices with element in R is denoted Rm×n .

A matrix A ∈ Rm×n is square if m = n, rectangular otherwise.

The element of a matrix A ∈ Rm×n are denoted by ai,j or A[i, j].

The matrix A is diagonal if A[i, j] = 0 for i 6= j.

An m× n diagonal matrix A is denoted A = diag(a11, a22, . . . , app)

where p = min(m,n). Given a matrix A ∈ Rm×n, its transpose is the matrix

AT ∈ Rn×m with AT [i, j] = A[j, i].

A square matrix is symmetric if A = AT and is orthogonal if AT = A−1.

Definition 2.3.1 If F : V → W is the function from the vector space V into the

vector space W , then F is called a linear transformation if

(a) F (u + v) = F (u) + F (v) , ∀u, v ∈ V

(b)F (ku) = kF (u) , ∀u ∈ V and all scalars k.

2.4 Newton’s method

We now want to determine zeros of a function of n variables; i.e., we want

to solve equations of the form

f(x) = 0, (2.2)

where f : D → Rn is a continuously differentiable function defined on some open

subset D ⊂ Rn. We begin by considering a function of one variable. Let x0 be an

approximation to a zero of the function f. In a neighborhood of x0, by Taylor’s

formula we have that

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)(x− x0)2

2!
+ . . .

≈ f(x0) + f ′(x0)(x− x0) = g(x). (2.3)
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Therefore, we may consider the zero of the affine linear function g as a new ap-

proximation to the zero of f and denote it by x1.

From the linear equation

f(x0) + f ′(x0)(x1 − x0) = 0 (2.4)

we immediately obtain

x1 = x0 − f(x0)

f ′(x0)
.

Geometrically, the affine linear function g describes the tangent line to the graph

of the function f at the point x0. This consideration can be extended to the case

of more than one variable. Given an approximation x0 to a zero of f, by Taylor’s

formula we still have the approximation (2.3), where now, as in the previous

section,

J(x) = (
∂fj
∂xk

)j,k=1,...,n

denotes the Jacobian matrix of f. Again we obtain a new approximation x1 for

the solution of f(x) = 0 by solving the linearized equation (2.4), by

x1 = x0 − [J(x0)]−1f(x0).

Geometrically, the function g of (2.3) corresponds to the hyperplane tangent to f

at the point x0.

Definition 2.4.1 Let D ⊂ Rn be open and let f : D → Rn be a continuously

differentiable function such that the Jacobian matrix f ′(x) is nonsingular for all

x ∈ D. Then Newton’s method for the solution of the equation

f(x) = 0

is given by the iteration scheme

xn+1 = xn − [J(xn)]−1f(xn), n = 0, 1, . . . , (2.5)

starting with some x0 ∈ D.
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Theorem 2.4.2 Let D ⊂ Rn be open and convex and let f : D → Rn be a

continuously differentiable. Assume that for some norm ‖ · ‖ on Rn and some

x0 ∈ D the following conditions hold:

(a) f satisfies

‖J(x)− J(y)‖ ≤ γ‖x− y‖ (2.6)

for all x, y ∈ D and some constant γ > 0.

(b) The Jacobian matrix J(x) is nonsingular for all x ∈ D, and there exists a

constant β > 0 such that

‖[J(x)]−1‖ ≤ β, x ∈ D. (2.7)

(c) For the constants

α = ‖[J(x0)]−1f(x0)‖ and q = αβγ (2.8)

the inequality

q <
1

2
(2.9)

is satisfied.

(d) For r = 2α the closed ball B(x0, r) = {x : ‖x− x0‖ ≤ r} is contained in D.

Then f has a unique zero x∗ in B(x0, r). Starting with x0 the Newton iteration

xn+1 = xn − [J(xn)]−1f(xn), n = 0, 1, . . . , (2.10)

is well-defined. The sequence (xn) converges to the zero x∗ of f, and we have the

error estimate

‖xn − x∗‖ ≤ 2αq2n−1, n = 0, 1, . . . . (2.11)

Proof. See [5].

Definition 2.4.3 A convergent sequence (xn) from a normed space with limit x is

said to be convergent of order p ≥ 1 if there exists a constant C > 0 such that

‖xn+1 − x‖ ≤ C‖xn − x‖p, n = 1, 2, . . . .

Convergence of order one or two is also called linear or quadratic convergence,

respectively.
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Example 2.4.4 Solve the nonlinear system

f1(x1, x2) = x3
1 + 3x2

2 − 21 = 0

f2(x1, x2) = x2
1 + 2x2 + 2 = 0

by Newton’s method starting, with the initial estimate x0 = (x0
1, x

0
2) = (1,−1).

Iterate until ‖xk − xk−1‖∞ ≤ 10−6.

The Jacobian matrix is

J(x1, x2) =


 3x2

1 6x2

2x1 2


 .

At the point (1,−1) the function vector and the Jacobian matrix take on the

values

F (1,−1) =


 −17

1


 , J(1,−1) =


 3 −6

2 2


 .

The differentials 4x0
1 and 4x0

2 are the solution of the system


 3 −6

2 2





 4x0

1

4x0
2


 = −


 −17

1


 .

Its solution is

4x0 =


 4x0

1

4x0
2


 =


 1.555556

−2.055556


 .

Thus, the next point of iteration is

x1 =


 x1

1

x1
2


 =


 1

−1


 +


 1.555556

−2.055556


 =


 2.555556

−3.055556


 .

Similarly, the next three points are

x2 =


 1.865049

−2.500801


 , x3 =


 1.661337

−2.359271


 and x4 =


 1.643173

−2.349844


 .

The results are summarized in the table
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Iteration k xk ‖xk − xk−1‖∞
0 [1,-1] -

1 [2.555556,-3.055556] 2.055556

2 [1.865049,-2.500801] 0.690507

3 [1.661337,-2.359271] 0.203712

4 [1.643173,-2.349844] 0.018164

5 [1.643038,-2.349787] 0.000135

6 [1.643038,-2.349787] 7.3×10−9

2.5 Generalized Inverses of Matrices

A matrix has an inverse only if it is square, and even then only if it is

nonsingular, or, in other words, if its columns (or rows) are linearly independent.

By a generalized inverse of a given matrix A, we shall mean a matrix X associated

in some way with A that

(i) exists for a class of matrices larger than the class of nonsingular matrices,

(ii) has some of the properties of the usual inverse, and

(iii) reduces to the usual inverse when A is nonsingular.

In theory, there are many different generalized inverses that exist.

We shall consider some of these.

Definition 2.5.1 Let A be an m by n matrix. The Moore-Penrose generalized

inverse of A, denoted A†, is the unique n by m matrix X which satisfies the four

Penrose conditions:

AXA = A,

XAX = X,

(AX)T = AX, and

(XA)T = XA.
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Definition 2.5.2 A {2}-inverse (also outer inverse) of A ∈ Rm×n is a matrix X ∈
Rn×m satisfying XAX = X, in which case rankX ≤ rankA, with equality if

X = A†. We say that X is a low rank [high rank ]{2}-inverse of A if its rank is

near 0 [near rankA], respectively.

2.6 Gram-Schmidt Orthogonalization

Definition 2.6.1 Let X be a complex (or real) linear space. Then a function

〈·, ·〉 : X ×X −→ C(or R) with the properties;

(H1) 〈x, x〉 ≥ 0, (positivity)

(H2) 〈x, x〉 = 0 if and only if x = 0, (definiteness)

(H3) 〈x, y〉 = 〈y, x〉, (symmetry)

(H4) 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉, (linearity)

for all x,y,z∈ X and α, β ∈ C (or R) is called a scalar product, or an

inner product, on X. (By the bar we denote the complex conjugate.) A linear

space X equipped with a scalar product is called a pre-Hilbert space, or an inner

product space.

The Gram-Schmidt orthogonalization procedure as described in the

following theorem. For a subset U of a linear space X we denote the set spanned

by all linear combinations of elements of U by span{U}.

Theorem 2.6.2 Let {u0, u1, . . . } be a finite or countable number of linearly inde-

pendent elements of a pre-Hilbert space. Then there exists a uniquely determined

orthogonal system {q0, q1, . . . } of the form

qn = un + rn, n = 0, 1, . . . ,

with r0 = 0 and rn ∈ span{u0, . . . , un−1}, n = 1, 2, . . . , satisfying

span{u0, . . . , un} = span{q0, . . . , qn}, n = 0, 1, . . . .

Proof. See [5].

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



11

2.7 Singular Value Decomposition(SVD)

Theorem 2.7.1 ( Singular Value Decomposition ) Let A be an n × m matrix.

Then there are orthogonal matrices U and V , of order m and n, respectively such

that

V T AU = D (2.12)

is diagonal rectangular matrix of order n×m

D =




µ1 0

µ2
...

. . .
...

0 µr

· · · · · · . . .




.

The number µ1, µ2, . . . , µr are called the singular value of A. They are all real and

positive, and they can be arranged so that

µ1 ≥ µ2 ≥ · · · ≥ µr > µr+1 = · · · = µn = 0

where r is the rank of the matrix A.

Proof. See [1].

Algorithm of Singular Value Decomposition

To find the singular value decomposition of the matrix A ∈ Rm×n one has to:

(1) Find the eigenvalues of the matrix AT A and arrange them in descending order.

(2) Find the number of nonzero eigenvalues of matrix AT A, say r.

(3) Find the orthonormal eigenvectors of the matrix AT A corresponding to the

obtained eigenvalues, and arrange them in the same order of form the column-

vectors of the matrix V ∈ Rn×n.

(4) Form a diagonal matrix
∑ ∈ Rm×n placing on the leading diagonal of it the

square roots σi =
√

λi of p = min{m,n} first eigenvalues of matrix AT A got in

(1) in descending order.
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(5) Find the first column-vectors of the matrix U ∈ Rm×m :

ui = σ−1
i Avi, i = 1, ..., r. (2.13)

(6) Add to the matrix U the rest of m-r vectors using the Gram-Schmidt orthog-

onalization process.

Example 2.7.2 Let us find the singular value decomposition of the matrix

A =




1 1

0 1

1 0


 .

1. Find the eigenvalues of the matrix

AT A =


 2 1

1 2


 :

det(AT A− λI) = 0 ⇐⇒
∣∣∣∣∣∣

2− λ 1

1 2− λ

∣∣∣∣∣∣
= 0

we have λ1 = 3, λ2 = 1.

2. Find the number of nonzero eigenvalues of the matrix AT A : r = 2.

3. Find the orthonormal eigenvectors of the matrix AT A corresponding to the

eigenvalues λ1 and λ2 :

v1 =



√

2/2
√

2/2


 and v2 =




√
2/2

−√2/2




forming a matrix

V =
[

v1 v2

]
=



√

2/2
√

2/2
√

2/2 −√2/2


 .

4. Find the singular value and the diagonal matrix Σ ∈ R3×2 :

σ1 =
√

λ1 =
√

3 and σ2 =
√

λ2 =
√

1 = 1

Σ =




√
3 0

0 1

0 0


 ,
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on the leading diagonal of which are the square roots of the eigenvalues of the

matrix AT A(in descending order) and the rest of the entries of the matrix Σ are

zeros.

5. Find the first two column-vectors of the matrix U ∈ R3×3using formula (2.13)

u1 = σ−1
1 Av1 =

√
3

3




1 1

0 1

1 0






√

2/2
√

2/2


 =




√
6/3

√
6/6

√
6/6




and

u2 = σ−1
2 Av2 =




1 1

0 1

1 0







√
2/2

−√2/2


 =




0

−√2/2
√

2/2


 .

6. To find the vector u3 we shall first find, applying the Gram-Schmitd process, a

vector ú3 perpendicular to u1 and u2:

ú3 = e1 − (uT
1 e1)u1 − (uT

2 e2)u2 =
[

1/3 −1/3 −1/3
]T

.

Norming the vector ú3, we get

u3 =




√
3/3

−√3/3

−√3/3


 .

Hence

U =
[

u1 u2 u3

]
=




√
6/3 0

√
3/3

√
6/6 −√2/2 −√3/3

√
6/6

√
2/2 −√3/3




and the singular value decomposition of the matrix A is

A =




√
6/3 0

√
3/3

√
6/6 −√2/2 −√3/3

√
6/6

√
2/2 −√3/3







√
3 0

0 1

0 0






√

2/2
√

2/2
√

2/2 −√2/2


 .
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