TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
LIST OF TABLES	xiii
LIST OF FIGURES	xv
ABBREVIATIONS	xvii
CHAPTER I: INTRODUCTION	
1.1 Statement and significance of the problem	1
1.2 Literature reviews	4
1.2.1 The clinical problem and phenotype of multidrug resistance	5 42
1.2.2 Multidrug resistance mediated by P-glycoprotein (Pgp)	8
1.2.3 Pgp gene family	10
1.2.4 Tissue distribution and overexpression of Pgp in cancer cell	10
1.2.5 Structure of Pgp	12
1.2.6 The mechanism of action of Pgp	14
1.2.7 Reversal of Pgp mediated MDR by chemosensitiser	17
1.2.8 Green tea	19
1.2.9 Green tea in cancer	22
1.2.10 Isolation and characterization of human MDR KB-V1 cell line	24
1.3 Objectives	26
CHAPTER II: MATERIALS AND METHODS	
2.1 Chemicals and reagents 2.2 Green tea flavonoids	27
2.2 Green tea flavonoids	27
2.3 Cell culture	27
2.4 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay	27
2.5 Accumulation and efflux of Rhodamine123	28
2.6 Accumulation and efflux of ³ H-vinblastine	29
2.7 Plasma membrane preparation	29

2.8 Protein determination	30
2.9 Western blot analysis and ECL detection	31
2.10 Statistical analysis	32
2.11 Cytotoxicity of green tea flavonoids in KB-V1 and KB-3-1 cell lines	32
2.12 Effect of green tea flavonoids on Pgp mediated drugs transport in KB-V1	32
and KB-3-1 cell lines	
2.12.1 Effect of green tea flavonoids on Rh123 accumulation and efflux	32
2.12.2 Effect of green tea flavonoids on radiolabeled drug accumulation	33
and efflux	
2.13 Effect of green tea flavonoids on Pgp expression (protein level) in KB-V1	33
cell line	
2.14 Effect of green tea flavonoids on cytotoxicity of chemotherapeutic drugs	34
(MDR phenotype) in KB-V1 and KB-3-1 cell lines	
2.14.1Effect of co-incubation of green tea flavonoids on cytotoxicity of	34
chemotherapeutic drugs	6
2.14.2 Effect of pre-incubation of green tea flavonoids on cytotoxicity of	34
chemotherapeutic drugs	
CHAPTER III: RESULTS	
3.1 Cytotoxicity of green tea flavonoids in KB-V1 and KB-3-1 cell lines	35
3.2 Effect of green tea flavonoids on Pgp mediated drug transport	
3.2.1 Effect of green tea flavonoids on Rh123 accumulation and efflux	39
3.2.2 Effect of green tea flavonoids on ³ H-vinblastine accumulation	47
and efflux	
3.3 Effect of green tea flavonoids on Pgp expression (Pgp level) in KB-V1 cell line	55
3.3.1 Effect of ECG and EGCG on Pgp level in KB-V1 cell line at 2 h.	- 55 SITY -
3.3.2 Effect of green tea flavonoids on Pgp level in KB-V1 cells at 48 h.	. 55
3.4 Effect of green tea flavonoids on cytotoxicity of chemotherapeutic drugs	63
(MDR phenotype) in KB-V1 and KB-3-1 cell lines	

CHAPTER IV: DISCUSSION AND CONCLUSION	78
4.1 Effects of green tea flavonoids on Pgp mediated drugs transport in KB-VI	79
and KB-3-1 cell lines	
4.2 Effect of green tea flavonoids on Pgp expression (protein level) in KB-V1	80
cell line	
4.3 Effect of green tea flavonoids on cytotoxicity of chemotherapeutic drugs	80
(MDR phenotype) in KB-V1 and KB-3-1 cell lines.	
4.4 The possible mechanism of desensitizing effect to chemotherapeutic drug	81
by EGCG in KB-V1 and KB-3-1	
REFERENCES	84
APPENDIX	95
VITA	107

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

TA	TABLE	
1.	The various mechanisms and phenotypes of MDR	7
2.	Nomenclature of multidrug resistance genes	10
3.	Cellular localization of Pgp in tissues, which are important for drug	11
	disposition and effects	
4.	Compounds which interact with Pgp	14
5.	Selected phamacological agents with ability reverse MDR	19
6.	Flavonoids content of 1.25% water extract of green tea and black tea	22
7.	Properties of MDR KB cell lines	26
8.	Preparation of bovine serum albumin standard solution	30
9.	Cytotoxicity of green tea flavonoids in KB-V1 cells	36
10.	IC ₂₀ and IC ₅₀ values of green tea flavonoids on cytotoxicity of KB-V1 cells	36
11.	Cytotoxicity of green tea flavonoids in KB-3-1 cells	37
12.	IC ₂₀ and IC ₅₀ values of green tea flavonoids on cytotoxicity of KB-3-1 cells	38
13.	Effect of green tea flavonoids on Rh123 accumulation in KB-V1 and KB-3-1 cells	45
14.	Effect of green tea flavonoids on Rh123 efflux in KB-V1 and KB-3-1 cells	46
15.	Effect of green tea flavonoids on ³ H-vinblastine accumulation in KB-V1	53
	and KB-3-1 cells	
16.	Effect of green tea flavonoids on ³ H-vinblastine efflux in KB-V1 and KB-3-1 cells	54
17.	Effect of catechin on vinblastine cytotoxicity in KB-V1 cells	64
18.	Effect of EC on vinblastine cytotoxicity in KB-V1 cells	65
19.	Effect of ECG on vinblastine cytotoxicity in KB-V1 cells	66
20.	Effect of EGC on vinblastine cytotoxicity in KB-V1 cells	67
21.	Effect of EGCG on vinblastine cytotoxicity in KB-V1 cells	68
22.	Effect of EGCG on vinblastine cytotoxicity in KB-3-1 cells	69
23.	Effect of EGCG on doxorubicin cytotoxicity in KB-V1 cells	70
24.	Effect of EGCG on doxorubicin cytotoxicity in KB-3-1 cells	71
25.	Effect of EGCG on colchicine cytotoxicity in KB-V1 cells	72

26.	Effect of EGCG on colchicine cytotoxicity in KB-3-1 cells	73
27.	Effect of EGCG on paclitaxel cytotoxicity in KB-V1 cells	74
28.	Effect of EGCG on paclitaxel cytotoxicity in KB-3-1 cells	75
29.	Effect of EGCG on vinblastine cytotoxicity in KB-V1 cells for 24 h incubation	76
30.	Effect of EGCG on pre-incubation of EGCG on vinblastine cytotoxicity in	77
	KB-V1 cells	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

FI	GURE	PAGE
1.	The resistance development during cancer chemotherapy	5
2.	Factors contribute to clinical MDR in patients with cancer	6
3.	Pgp function in the plasma membrane of a cancer cell during chemotherapy	8
4.	Pgp expression in tumor prior to receiving chemotherapy and after therapy	9
5.	Two-dimensional hypothetical model of human Pgp structure based on a	13
	hydropathy plot analysis of primary amino acid sequence	
6.	A proposed scheme for the catalytic cycle of ATP hydrolysis by Pgp	16
7.	Functional representation of Pgp	18
8.	Nuclear structure and numbering system of bioflavonoids	20
9.	Structure of green tea flavonoids	21
10.	Flow diagram showing the steps for increasing vinblastine resistance in	25
	the MDR KB-V1 cell line	
11.	The principle of enhanced chemiluminescence (ECL) system	32
12.	Cytotoxiciy of green tea flavonoids in KB-V1 cells	35
13.	Cytotoxiciy of green tea flavonoids in KB-3-1 cells	37
14.	Effect of catechin on Rh123 accumulation (A) and efflux (B) in	40
	Pgp expressing KB-V1 cell line	
15.	Effect of EC on Rh123 accumulation (A) and efflux (B) in	41
	Pgp expressing KB-V1 cell line	
16.	Effect of EGC on Rh123 accumulation (A) and efflux (B) in	42
	Pgp expressing KB-V1 cell line	
17.	Effect of EGCG on Rh123 accumulation (A) and efflux (B) in	43
	Pgp expressing KB-V1 and KB-3-1 cell lines	
18.	Effect of ECG on Rh123 accumulation (A) and efflux (B) in	44
	Pgp expressing KB-V1 and KB-3-1 cell lines	
19.	Effect of catechin on ³ H-vinblastine accumulation (A) and efflux (B)	48
	in KR-V1 cell line	

20.	Effect of EC on 'H-vinblastine accumulation (A) and efflux (B)	49
	in KB-V1 cell line	
21.	Effect of EGC on ³ H-vinblastine accumulation (A) and efflux (B)	50
	in KB-V1 cell line	
22.	Effect of EGCG on ³ H-vinblastine accumulation (A) and efflux (B)	51
	in KB-V1 and KB-3-1 cell lines	
23.	Effect of ECG on ³ H-vinblastine accumulation (A) and efflux (B)	52
	in KB-V1 and KB-3-1 cell lines	
24.	Pgp level in KB-V1 cells cultured in 100,200 and 300 μM ECG for 2 h	56
25.	Pgp level in KB-V1 cells cultured in 100,200 and 300 μ M EGCG for 2 h	57
26.	Pgp level in KB-V1 cells cultured in 50 and 100 μM catechin for 48 h	58
27.	Pgp level in KB-V1 cells cultured in 50 and 100 μM EGC for 48 h	59
28.	Pgp level in KB-V1 cells cultured in 50 and 100 μM EGCG for 48 h	60
29.	Pgp level in KB-V1 cells cultured in 50 and 100 μM EC for 48 h	61
30.	Pgp level in KB-V1 cells cultured in 50 and 100 μM ECG for 48 h	62
31.	Effect of catechin on vinblastine cytotoxicity in KB-V1 cells	64
32.	Effect of EC on vinblastine cytotoxicity in KB-V1 cells	65
33.	Effect of ECG on vinblastine cytotoxicity in KB-V1 cells	66
34.	Effect of EGC on vinblastine cytotoxicity in KB-V1 cells	67
35.	Effect of EGCG on vinblastine cytotoxicity in KB-V1 cells	68
36.	Effect of EGCG on vinblastine cytotoxicity in KB-3-1 cells	69
37.	Effect of EGCG on doxorubicin cytotoxicity in KB-VI cells	70
38.	Effect of EGCG on doxorubicin cytotoxicity in KB-3-1 cells	71
39.	Effect of EGCG on colchicine cytotoxicity in KB-V1 cells	72
40.	Effect of EGCG on colchicine cytotoxicity in KB-3-1 cells	73 SITY -
41.	Effect of EGCG on paclitaxel cytotoxicity in KB-V1 cells	74
42.	Effect of EGCG on paclitaxel cytotoxicity in KB-3-1 cells	75
43.	Effect of EGCG on vinblastine cytotoxicity in KB-V1 cells for 24 h incubation	76
44.	Effect of pre-incubation of EGCG on vinblatine cytotoxicity in KB-V1 cells	77

ABBREVIATIONS

% Percent °C Degree Celsius μCi Microcurie μg Microgram μl Microlitre μM Micromolar μm Micrometre **ABC** ATP-binding cassette APS Ammonium persulphate bp Base pair BSA Bovine serum albumin cDNA Complementary DNA Ci Curie cm Centimetre cm^2 Square centrimetre CO₂ Carbon dioxide CuSO₄ Copper sulfate DDH₂O Double distilled water **DMEM** Dulbecco's modified Eagle's medium **DMSO** Dimethyl sulfoxide dpm Disintegration per minute EC Epicatechin **ECG** Epicatechin gallate **ECL** Enhanced chemiluminescence **EDTA** Ethylenediaminetetraacetic acid **EGC** Epigallocatechin

Epigallocatechin gallate

EGCG

xviii

ELISA Enzyme linked immunosorbent assay **FCS** Fetal calf serum Gram g Giggabecquerel (1.0x10⁹ becquerel) GBq Hour h **HBSS** Hanks' balance salt solution N-2-hydroxyethylpiperazine-N-2-**HEPES** ethanesulfonic acid IC_{20} Inhibitory concentration at 20% growth Inhibitory concentration at 50% growth IC_{50} KCl Potassium chloride kDa Kilodalton Kg Kilogram KH₂PO₄ Monobasic potassium phosphate KOH Potassium hydroxide Monoclonal antibody Mab **MDR** Multidrug resistance mdr-1 Multidrug resistance gene The isoforms of mdr-1 gene in human MDR-1, MDR-3 The isoforms of mdr-1 gene in rodents mdr-1a, mdr-1b Milligram mg Magnesium chloride MgCl, Minute Millilitre ml Millimole 3-(4,5 dimethylthiazole-2yl)-2,5 MTT diphenyltetrazolium bromide) Na,CO, Sodium carbonate Dibasic sodium phosphate Na,HPO4

Sodium chloride

NaCl

NaH₂PO₄ Monobasic sodium phosphate

NaHCO₃ Sodium bicarbonate

NaOH Sodium hydroxide

ng Nanogram

nm Nanometre

PBS Phosphate buffer saline

Pgp P-glycoprotein

PMSF Phenylmethyl sulfonyl fluoride

POPOP 1,4-bis[2-(5-phenyloxazolyl)]benzene

PPO 2,5-Diphenyloxazole

Rh123 Rhodamine123

rpm Revolution per minute

SDS-PAGE Sodium dodecyl sulfate-polacrylamide gel

Electrophoresis

TEMED N,N,N,N,-tetramethyl ethylene-diamine

THF Tetrahydrofuran

TM Transmembrane

Tris-base Tris (hydroxymethyl aminomethane)

VBL Vinblastine

Ver Verapamil

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved