TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	vi
LIST OF TABLES	xi
LIST OF ILLUSTRATIONS	xii
ABBREVATIONS AND SYMBOLS	xv
CHAPTER I. INTRODUCTION	
1.1 Statement and significance of the problem	5 1
1.2 Literature reviews	
1.2.1 Gastric cancer epidemiology and risk factors	3
1.2.2 Stomach and gastric cancer	5
1.2.3 Pepsinogens: structure and function	8
1.2.4 The role of Interleukin-1 in carcinogenesis	12
and cell transformation	
1.2.5 Interleukin -1 β and gastric cancer	15
1.2.6 Interleukin-1 structure and function	16
1.2.7 Interleukin-1 gene cluster	19
1.2.8 Transcriptional regulation of Interleukin-1	21
1.2.9 Production of Interleukin-1	23
1.2.10 Polymerase Chain Reaction (PCR) Technology	27
and protocol	
1.2.11 Optimization of PCR	30
1.2.12 Restriction Fragment Length Polymorphism (RFLP)	33
1.2.13 Radioimmunoassay	34
1.3 Objectives	35

2.1 Research design	36
2.2 Methods	
2.2.1 Blood samples	38
2.2.2 Genomic DNA preparation	38
2.2.3 Polymerase chain reaction system	39
2.2.4 The precipitation of amplicon	41
2.2.5 Agarose gel electrophoresis	42
2.2.6 Restriction enzyme Aval cut	42
2.2.7 Polyacrylamide gel electrophoresis	44
2.2.8 Radioimmunoassay for Plasma Pepsinogen	45
2.2.9 Statistical analysis	45
CHAPTER III. RESULTS	
3.1 Genomic DNA preparation	46
3.2 Polymerase chain reaction	46
3.2.1 Optimization of PCR	46
3.2.2 PCR-base diagnosis of IL-1B	47
3.3 Restriction enzyme AvaI cut	47
3.4 The results of IL-1B -511 genotype, PG I, PG II	64
and PG I/ PG II Levels	
3.5 Result of the different of C-T base transition of -511 from	70
the transcription start site of IL-1B in the northern Thai population	
3.6 Plasma Pepsinogen Levels in Benign Gastritis and Gastric Cancer	71
3.7 Effect of various age on Pepsinogen I/II ratio Levels	72
3.8 Serum Pepsinogen Levels and Gastric Cancer Risk	77
3.9 IL-1B -511 Genotype and Gastric Cancer Risk	78
3.10 Effect of the IL-1B -511 Polymorphism on Plasma Pepsinogen levels	79
CHAPTER IV. DISCUSSION	83

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

TABL	E NHEHB	Page
1	International comparison of age-adjusted incidence rates (/100,000)	4
	of gastric cancer in selected countries	
2	Aspartic proteinase and code numbers designated on the	10
	(basis of IUB's Enzyme Nomenclature rules)	
3	The result of of IL-1B -511 genotype, PG I, PG II and PG I/ PG II Levels	64
	from gastric cancer groups	
4	The result of of IL-1B -511 genotype, PG I, PG II and PG I/ PG II Levels	66
	from benign gastritis groups	
5	Analysis of genotype and gene frequency of IL-1B -511 from 130 samples	68
6	Median plasma pepsinogen I, pepsinogen II levels and pepsinogen I/II ratio	71
	in benign gastritis and gastric cancer	
7	Median pepsinogen I/II ratio of various age in benign gastritis and gastric cancer	74
8	The effect of the PGI, PG II, and the PG I/II ratio on risk of gastric cancer	77
	was expressed as odds ratios (OR) with 95% confidence interval (CI)	
9	Odd ratio (OR) of benign gastritis and gastric cancer according to	78
	II-1β-511 genotype	

LIST OF ILLUSTRATIONS

Figure		Page
1	Primary regions and structures of the stomach	6
2	Gastric pits and gastric glands of the mucosa	6
3	Hypothesis of gastric cancer etiology	7
4	Diagram of the pepsinogen structure and of the major points of hydrolysis	11
5	Patterns of expression of IL-1 in tumor cells and its possible consequences on	14
	malignancy patterns	
6	Structure of human IL-1 β and the type I IL-1 receptor (IL-1RI)	18
7	Map of the IL-1 gene cluster	20
8	The IL1 gene promoters. Comparison of the regulatory elements of the IL-1 α ,	22
	IL-1β and IL-1ra promoters	
9	Monocyte producing IL-1 α mRNA coding for proIL-1 α is translated in association	n 25
	with microtubules	
10	Human blood monocyte producing IL-1 β mRNA coding for proIL-1 β is translated	1 26
	on polysomes in the cytosol and associated with microtubules	
11	Polymerase chain reaction amplification cycles	29
12	The whole scheme of interleukin- 1β genotype determination from	37
	the blood sample	
13	The location of primers for PCR to detection C-T base transition	39
	at positions -511 base pair from the transcriptional start site	
1	Normal IL-1 B seguence of intron 5, and the position of the primer	40
	in the IL-1 B gene	e
1:	The scheme of restriction fragment length polymorphism (RFLP) procedure	43 ·
1	The optimization of the annealing temperatures for detection of -511 promoter	48
	mutation of IL-1B gene by PCR	

17	The optimization of the primer for detection of -511 promoter	49
	mutation of IL-1β gene by PCR	
18	The optimization of the MgCl ₂ for detection of -511 promoter	50
	mutation of IL-1β gene by PCR	
19	RFLP pattern from peripheral blood samples after cut	51
	with Aval Restriction Enzyme	
20	RFLP pattern from gastric cancer's peripheral blood samples	52
	after cut with AvaI restriction enzyme (sample number; GC 3, GC 4, GC 5)	
21	RFLP pattern from gastric cancer's peripheral blood samples	53
	after cut with Aval restriction enzyme (sample number; GC 7, GC 10, GC 15)	
22	RFLP pattern from gastric cancer's peripheral blood samples	54
	after cut with AvaI restriction enzyme (sample number; GC 18, GC 21, GC 25)	
23	RFLP pattern from gastric cancer's peripheral blood samples	55
	after cut with AvaI restriction enzyme (sample number; GC 27, GC 33, GC 36)	
24	RFLP pattern from gastric cancer's peripheral blood samples	56
	after cut with AvaI restriction enzyme (sample number; GC 39, GC 40, GC 41)	
25	RFLP pattern from benign gastritis group's peripheral blood samples	57
	after cut with AvaI restriction enzyme (sample number; BG 2, BG 5, BG 7)	
26	RFLP pattern from benign gastritis group's peripheral blood samples	58
	after cut with Aval restriction enzyme (sample number; BG 12, BG 15, BG 17)	
27	RFLP pattern from benign gastritis group's peripheral blood samples	59
	after cut with Aval restriction enzyme (sample number; BG 21, BG 27, BG 29)	
28	RFLP pattern from benign gastritis group's peripheral blood samples	60
	after cut with Aval restriction enzyme (sample number; BG 32, BG 37, BG 43)	
29	RFLP pattern from benign gastritis group's peripheral blood samples	61
	after cut with Aval restriction enzyme (sample number; BG 49, BG 54, BG 59)	
30	RFLP pattern from benign gastritis group's peripheral blood samples	62
	after cut with AvaI restriction enzyme (sample number; BG 62, BG 66, BG 75)	
31	RFLP pattern from benign gastritis group's peripheral blood samples	63
	after cut with AvaI restriction enzyme (sample number: BG 76, BG 85, BG 89)	

32	Median scores for (A) serum PG I levels, (B) serum PG II levels	72
	in comparison with benign gastritis and gastric cancer groups	
33	Median scores for serum PG I / PG II ratios in comparison	73
	with benign gastritis and gastric cancer groups	
34	Median scores for serum PG I/PG II ratios of benign gastritis	75
	and gastric cancer in the two age groups (<40 and ≥40)	
35	Median scores for serum PG I/PG II ratios of benign gastritis	76
	and gastric cancer in the two age groups (<50 and ≥50)	
36	Median scores for serum pepsinogen I levels of benign gastritis	80
	and gastric cancer in the three IL-B -511 genotype groups	
37	Median scores for serum pepsinogen II levels of benign gastritis	8 1
	and gastric cancer in the three IL-B -511 genotype groups	
38	Median scores for serum PG I/PG II ratios of benign gastritis	82
	and gastric cancer in the three IL-B -511 genotype groups	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

α alpha

β beta

IL-1 interleukin-1

PCR polymerase chain reaction

RFLP restriction fragment length polymorphism

% percentage

PG I pepsinogen I

PG II pepsinogen II

PG I/II ratio pepsinogen I/pepsinogen II ratio

ng nanogram

μg microgram

L liter

ml milliliter

IL-1Ra interleukin-1 receptor antagonist

base pair

A adenine base

T thymine base

C cytosine base

G guanine base

IL-1RI interleukin-1 receptor I

sIL-1RI soluble interleukin-1 receptor I

^oA angstrom

IL-1A interleukin-1 alpha gene

IL-1B interleukin-1 beta gene

IL-1RN interleukin-1 receptor antagonist gene

kb kilobase

IL-1F interleukin-1 family gene

DNA deoxyribonucleic acid

kD kilodaltons

IRAP interleukin-1 receptor antagonist protein

cAMP adenosine 3', 5'-cyclic monophosphate

AP-1 activating protein-1

icIL-RA nonsecretable isoforms of the IL-1Ra

ICE IL-1β converting enzyme

^oC degree celsius

ssDNA single stranded DNA

dNTPs deoxynucleotidetriphosphates

mM millimolar microliter

Tm melting temperature

SDS sodium dodecyl sulphate

UV ultra violet

rpm revolution per minute

EDTA ethylenediaminetetra-acetic acid

M molar

pmol picomolar

V volt

em centrimeter

mm millimater

m - gram

hr hour

min minute

sec second

TEMET N,N,N',N'-tetramethyleneethylenediamine

TBE tris-borate EDTA

OR odd ratio

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved