CHAPTER 3 ### RESULTS ## 3.1 Effects of Centella asiatica extract on AFB₁-albumin adduct after a single dose of AFB₁ exposure. ### 3.1.1 Time course of AFB_1 -albumin adducts formation after a single dose of AFB_1 in rats. As shown in Table 3, AFB₁-albumin adduct levels were detected within 2 hours after AFB₁ treatment. The maximum level (1.06 ± 0.05) was detected at 4 hours post-treatment and remained steady until 8 hours. After that the adducts had declined to 0.12 ± 0.06 ng/mg serum albumin at 120 hours (Figure 14) with half-life of the adduct of about 46 hours as calculated assuming a first-order rate constant based on the data in Figure 15. Figure 14 The levels of serum AFB₁-albumin adduct in rats treated with single doses of AFB₁ Figure 15 Kinetic of removal of AFB₁-albumin adducts following exposure to AFB₁. ## ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved Table 3 The level of AFB₁-albumin adducts in serum after a single dose of AFB₁ exposure | Time of here) | | Aflatoxin B ₁ -1 | ysine adducts (n | g/mg albumin) ^a | | |---------------|-----------------|-----------------------------|---------------------|----------------------------|-------------------------| | Time(hrs) | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | | 0 | 0.07 + 0.00 | 0.09 + 0.01 | 0.12 + 0.01 | 0.08 + 0.02 | 0.05 + 0.03 | | 2 | 0.59 + 0.22 | $1.74 + 0.08^{c}$ | 1.35 ± 0.18^{c} | $0.11 + 0.08^{b}$ | 1.43 + 0.24 | | 4 | 1.06 + 0.05 | 1.22 + 0.26 | $2.47 + 0.09^{b}$ | 1.36 + 0.03 | 1.64 + 0.75 | | 6 | 0.93 + 0.07 | 1.18 + 0.22 | 1.12 + 0.25 | 0.74 + 0.38 | 0.97 + 0.33 | | 8 | 1.09 + 0.16 | 1.36 + 0.10 | 1.20 + 0.33 | $0.34 + 0.06^{c}$ | 0.46 +0.19 ^b | | 12 | 0.74 + 0.22 | $1.44 + 0.13^{c}$ | 1.04 ± 0.19^{b} | $0.31 + 0.11^{b}$ | 0.37 ± 0.09 | | 18 | 0.74 + 0.55 | 0.74 ÷ 0.15 | 0.94 + 0.26 | 0.31 + 0.03 | 0.36 + 0.06 | | 24 | 0.34 ± 0.24 | $1.11 + 0.18^{\circ}$ | 0.67 + 0.12 | 0.70 + 0.29 | 0.33 + 0.03 | | 36 | 0.44 + 0.13 | 0.40 + 0.04 | 0.48 + 0.17 | 0.55 + 0.13 | 0.62 + 0.06 | | 48 | 0.52 + 0.08 | 0.41 + 0.12 | 0.50 + 0.14 | 0.48 + 0.32 | 0.52 + 0.04 | | 72 | 0.38 + 0.06 | 0.43 + 0.06 | 0.50 + 0.15 | 0.49 + 0.27 | 0.30 + 0.08 | | 96 | 0.31 + 0.16 | 0.38 + 0.13 | 0.55 + 0.24 | 0.18 + 0.01 | 0.13 + 0.05 | | 120 | 0.12 + 0.06 | $0.66 + 0.05^{c}$ | $0.55 + 0.12^{c}$ | 0.24 + 0.11 | 0.07 + 0.01 | a) Mean + SD b-c) Significantly different from AFB₁-treated control group (Group 1) by Mann-Whiney U test [(b) < 0.05] and (c) < 0.01 Group 1: distilled water $+ AFB_1 + distilled$ water Group 2: C. asiatica (CA) extract (10 mg/kg bw) + AFB₁+ CA Group 3: C. asiatica (CA) extract (100 mg/kg bw) + AFB₁+CA Group 4: distilled water + AFB₁+ CA(10 mg/kg bw) Group 5: distilled water + AFB₁+ CA(100 mg/kg bw) # 3.1.2 Modulation effect of C. asiatica extract on AFB₁-albumin adduct in AFB₁-treated rat serum The effect of *C. asiatica* extract on AFB₁-albumin adduct formation was shown in Table 3. Administration the low dose (10 mg/kg bodyweight) of extract prior to AFB₁ exposure (group 2) resulted in an early detectable the maximum level of AFB₁-albumin adduct formation with significantly (p<0.01) higher levels 2 hours after treatment as compared to 4 hours in the control (group 1) while the maximum level of the adduct observed in the rats received the high dose (100 mg/kg bodyweight) of extract (group 3) was 4 hours after AFB₁ exposure similarly as the control. After that, the adduct levels in both group were slightly higher than in controls, and were maintained at the low steady state level (0.38-0.66 ng/mg albumin) until 36 hours post-treatment throughout the study (Figure 16). Similar as control group, the levels of AFB_1 -albumin adduct in the rats that fed with either low dose or high dose of the extract after AFB_1 exposure (group 4 and group 5, respectively) was peak at 4 hours post-treatment. However, the modulating effect of administration of the extract after treatment with AFB_1 (group 4 and 5) was different from the effect of pretreatment with the extract. As shown in Figure 17, after the adduct level reached the maximum level at 4 hours after treatment, the level rapidly decreased to significantly (p<0.05) lower than in the control group at 8 hours post-exposure of AFB_1 . After that the level reached a plateau level and was not significantly different from the control. ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved Figure 16 The levels of AFB₁-albumin adduct in serum of the rats received C. asiatica extract (CA) before and after treated with single doses of AFB₁ (*, ** Significantly different from treatment with AFB, alone (group 1): p<0.05, p<0.01 respectively; Mann-Whitney U test) Figure 17 The levels of AFB₁-albumin adduct in serum of the rats received C. asiatica extract (CA) after treated with single doses of AFB₁ (*, ** Significantly different from treatment with AFB, alone (group 1): p<0.05, p<0.01 respectively; Mann-Whitney U test) ### 3.2 Effects of C. asiatica extract on AFB₁-metabolism in rat after treated with multiple dose of AFB, exposure ### 3.2.1 Effects of C. asiatica extract on AFB,-albumin adduct formation The mean body weight of rats in each group was shown in Figure 18. The body weight of rats that continuously received *C. asiatica* extract only (group 2) was not significantly difference from the rats that received distilled water only (group 1). Apparently, the body weight of rats both fed with AFB₁ only (group 5) and co-treated with AFB₁ and either high dose or low dose (group 3 or group 4) of *C. asiatica* extract was significantly lower than normal rats (group 1) after 16 weeks of the experiment. It was noteworthy that neither distilled water (group 1) nor *C. asiatica* extract (group 2) administration was detectable the AFB₁-albumin adduct formation in rat serum, while the multiple dose of AFB₁ exposure (group 3, 4 and 5) resulted in accumulation of AFB₁-albumin adduct (Figure 19). As shown in Figure 20, the accumulation of AFB₁-albumin adduct in AFB₁-treated rats reached a steady state after 20 to 24 doses of AFB₁. The effects of C. asiatica extract on AFB₁-albumin adduct level are shown in Table 4. Receiving the high dose (100 mg/kg bw) of extract (group 3) with post-treatment of four doses of AFB₁ resulted in slightly increased albumin adduct levels but this was not significantly difference from the AFB₁ control group (group 5). In addition, there was a significantly (p<0.05) elevated (2.03 folds) level from the AFB₁ control group in rats that co-treatment of the low dose (10 mg/kg bw) of extract with AFB₁ (group 4). Apparently, administration the high dose of the extract resulted in the significantly difference in adducts level observed after 12 and 16 doses of AFB₁ treatment compared to AFB₁ control group. Although the adduct level was lower than AFB₁ control group, no significant difference could be observed after 24 doses of AFB₁. Conversely, the albumin adduct level observed in rats that received the low dose of extract (group 4) was significantly decreased (p<0.05) after 24 doses of AFB₁ as compared to AFB₁ control group, as shown in Figure 20. Figure 18 Mean body weight of Wistar rats in the multiple dose of AFB, exposure experiment (*, ** Significantly different from AFB₁-treated control group by Mann-Whiney U test, p<0.05 and p<0.01 respectively) Table 4 Effects of C. asiatica extract on AFB₁-albumin adduct in multiple dose of AFB₁-treated rat | | al
yri | | AI | AFB ₁ -lysine adduct (ng/mg albumin) ^a | (ng/mg albumin |) a | | |-------|--|-----------------------------|-----------------|--|--------------------|------------------|--------------------------| | Group | Treatment | | (1) | (after dose of AFB, administration) | 3, administration) | (| | | | | 4 | 8 | 12 | 91 | 20 | 24 | | _ | Distilled water, daily | 0.20 ± 0.13 | 0.67 ± 0.19 | 0.28 ± 0.19 | 0.10 ± 0.08 | 0.17 ± 0.16 | 0.08 ± 0.06 | | 7 | CA extract (100 mg/kg bw), daily | 0.55 ± 0.34 | 0.59 ± 0.17 | 0.46 ± 0.15 | 0.08 ± 0.04 | 0.08 ± 0.04 | 0.14 ± 0.07 | | m | CA extract (100 mg/kg bw), daily
AFB ₁ (400 µg/kg bw), once a week | 16.73 ± 2.06 | 19.40 ± 3.67 | 10.62 ± 4.24 ^b | 8.71 ± 1.43° | 8.01 ± 2.37 | 4.72 ± 2.38 | | 4 | CA extract (10 mg/kg bw), daily AFB ₁ (400 µg/kg bw), once a week | $24.28 \pm 5.90^{\text{b}}$ | 17.15 ± 4.44 | 16.35 ± 3.00 | 7.30 ± 2.57 | 11.53 ± 1.56 | 4.57 ± 2.89 ^b | | κ. | Distilled water, daily
AFB, (400 µg/kg bw), once a week | 11.98 ± 4.69 | 17.98 ± 2.18 | 15.66 ± 2.42 | 5.25 ± 1.19 | 10.29 ± 1.40 | 9.89 ± 3.23 | | | | | | | | | | a) Mean±SD b-c) Significantly different from AFB₁-treated control group by Mann-Whiney U test [(b) < 0.05 and (c) < 0.01] (*, ** Significantly different from treatment with AFB₁ alone (group 5), p< 0.05, p< 0.01 respectively; Mann-Whitney Test) Figure 19 Mean serum AFB₁-albumin adduct levels in rats received C. asiatica extract after treated with multiple doses of AFB₁ (*, ** significantly different from treatment with AFB, alone (group 5) p<0.05, p<0.01 respectively; Mann-Whitney U Test) Figure 20 Accumulation of AFB, bound to albumin following multiple dose exposure ### 3.2.2 Effects of C. asiatica extract on 8-OHdG formation in rat liver The standard curves for 2'-deoxyguanosine (2'-dG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were obtained for concentrations ranging between 20-100 μ g/ml and 0.5-7.0 μ g/ml, respectively, as shown in Figure 21. In this system the limits of detection of 2'-dG and 8-OHdG were 0.2 μ g/ml. Figure 22 and Figure 23 show the electropherograms of standard and liver DNA samples of 2'-dG and 8-OHdG under described CE conditions. Migration times were 1.5 min and 1.75 min for 2'-dG and 8-OHdG, respectively. The results (Table 5) showed that after AFB₁ exposure the level of 8-OHdG formation in rat liver was significantly increased in all doses except at 12 and 20 doses of AFB₁ exposure. However, the level of 8-OHdG in rat received *C. asiatica* extract (100 mg/kg bodyweight) only (group 2) was not significantly different from the control group that received distilled water only (group 1). By administration of the low dose (10 mg/kg bw) of *C. asiatica* extract (group 4), the level of 8-OHdG was significantly increased (p<0.01), while the administration of the higher dose (100 mg/kg bw) of *C. asiatica* extract (group 3) was slightly increased after 4 doses of AFB₁ (Figure 24). However, after exposure to 8 doses of AFB₁, the 8-OHdG formation was decreased. The reduction of 8-OHdG level was significant only in rats that received the high dose of extract. It was noteworthy that reduction in 8-OHdG of about 1.4 folds and 1.5 folds was observed in rats that received the high dose and low dose of extract after the 24 doses of AFB₁, respectively, but not significantly (Figure 25). ล้**ปสัทธิมหาวิทยาลยเชยงเหม** Copyright[©] by Chiang Mai University All rights reserved Figure 21 Standard calibration curves of standard (a) 2'-deoxyguanosine (2'-dG), (b) 8-hydroxy-2'-deoxyguanosine (8-OHdG) Figure 22 Electropherogram of standard (a) 2'-dG and (b) 8-OHdG ### **Absorbance Unit** Figure 23 Electropherogram of liver DNA sample of rat treated with AFB₁ (a) 2'-dG and (b) 8-OHdG Table 5 Effect of C. asiatica extract on 8-OHdG formation in multiple dose of AFB₁-treated rat | | i r
Yri
I | | | 8-OHdG / 10 ³ dG ^a | / 10³ dGª | | | |-------|--|-----------------|---------------------------|--|--------------------|-----------------------------------|---------------------------| | Group | Treatment | | | (after dose of AFB, administration) | 3, administration) | 6 | | | | it (i | 4 | 8 | 12 | 16 | 20 | 24 | | | Distilled water | 6.06 ± 0.84 | 9.39 ± 0.64 | 10.49 ± 4.38 | 15.18 ± 1.60 | 11.55 ± 2.80 | 13.30 ± 1.47 | | 7 | CA extract (100 mg/kg bw) | 7.54 ± 3.04 | 11.20 ± 2.34 | 8.54 ± 2.21 | 17.98 ± 3.57 | 14.34 ± 4.07 16.50 ± 4.61 | 16.50 ± 4.61 | | ю | CA extract (100 mg/kg bw) AFB ₁ | 9.48 ± 3.29 | 10.29 ± 2.21^d | 15.27 ± 6.03 | 21.21 ± 4.82 | 17.86 ± 2.32 | 18.09 ± 5.94 | | 4 | CA extract (10 mg/kg bw) AFB ₁ | 13.89 ± 3.94° | 12.77 ± 2.24 | 15.71 ± 5.85 | 20.76 ± 4.05 | 17.77 ± 3.01 | 16.31 ± 6.51 | | ν, | Distilled water
AFB ₁ | 8.22 ± 0.52 ° | 15.64 ± 2.59 ^b | 15.33 ± 2.98 | 25.47 ± 4.31° | 14.60 ± 1.93 | 24.47 ± 2.99 ^b | | | | | | | | | | a) Mean ± SD b-c) Significantly different from non-treated group (Group 1) by Mann-Whiney U test [(b) < 0.05 and (c) < 0.01] d-e) Significantly different from AFB₁-treated control group (Group 5) by Mann-Whiney U test [(d) < 0.05 and (e) < 0.01] Figure 24 Mean 8-OHdG levels in rats received C. asiatica extract after treated with multiple doses of AFB, (*, ** significantly different from treatment with AFB, alone (group 5), p<0.05, p<0.01 respectively; Mann-Whitney U Test) (*, ** significantly different from non-treated rats (group 1), p< 0.05, p< 0.01 respectively; Mann-Whitney U Test) Figure 25 Effects of C. asiatica extract on 8-OHdG formation in rats treated with multiple doses of AFB, ### 3.3.3 Effects of C. asiatica extract on GGT activity in rat serum As shown in Table 6 and Figure 26, GGT activity in non-treated rats (Group 1) was 3.00-5.00 IU/L. A significant (1.6 folds) induction of GGT activity in AFB₁ control rat serum (Group 5) was demonstrated after the 24 doses of AFB₁ as compared to non-treated rat (Group 1). The results showed that the GGT activity was reduced (p<0.01) in rats that received the high dose (100 mg/kg bw) of *C.asiatica* extract after 24 doses of AFB₁ administration. Conversely, administration of low dose (10 mg/kg bw) of *C. asiatica* extract resulted in significantly increased GGT activity after 16 doses of AFB₁ exposure. It was apparently that GGT activity was slightly decreased after 24 doses of AFB₁, but not significantly (Figure 26). Table 6 Effect of C. asiatica extract induced GGT in multiple dose of AFB₁-treated rat | | R 1 | | | GGT activity (TU/L) | ity (TU/L) | | | |-------------|--|-----------------|-----------------|---------------------|-------------------------------------|---------------|---------------------| | Group | Treatment | | | (after dose of AFI | (after dose of AFB, administration) | 6 | | | | i i | 4 | 8 | 12 | 16 | 20 | 24 | | | Distilled water | 3.67 ± 2.08 | 5.00 ± 1.41 | 3.00 ± 0.00 | 3.80 ± 1.10 | 3.00 ± 0.00 | 3.50 ± 1.00 | | 8 | CA extract (100 mg/kg bw) | 2.80 ± 1.30 | 2.75 ± 0.50 | 7.40 ± 4.34 | 4.60 ± 0.89 | 4.33 ± 1.16 | 3.00 ± 0.00 | | ю | CA extract (100 mg/kg bw) AFB ₁ | 2.50 ± 0.71 | 4.75 ± 3.10 | 11.25 ± 8.66 | 5.50 ± 2.89 | 3.00 ± 0.00 | 3.00 ± 0.00° | | 4 | CA extract (10 mg/kg bw) AFB ₁ | 3.00 ± 1.73 | 5.00 ± 2.12 | 5.40 ± 2.51 | 8.00 ± 2.12^{d} | 3.00 ± 0.00 | 4.33 ± 1.16 | | יא | Distilled water
AFB ₁ | 2.50 ± 0.58 | 4.25 ± 2.50 | 4.67 ± 2.89 | 3.00 ± 0.00 | 3.50 ± 1.00 | 5.75 ± 1.50^{b} | a) Mean ± SD b) Significantly different from non-treated group (Group 1) by Mann-Whiney U test [(b) < 0.05] c-d) Significantly different from AFB₁-treated group (Group 5) by Mann-Whiney U test [(c) < 0.05, (d) <0.01] Figure 26 Effect of C. asiatica extract on γ-glutamyl transpeptidase activity (*, ** Significantly different from treatment with AFB₁ alone (group 5), p< 0.05, p< 0.01 respectively; Mann-Whitney Test) (* significantly different from non-treated rats (group 1), p< 0.05; Mann-Whitney U Test)