CHAPTER 5 ## CONCLUSION In conclusion, the present study has shown that administration of *C. asiatica* extract might modulate the metabolism of AFB₁, not only a single dose of 40 µg/kg bw of AFB₁ but also the multiple dose of 400 µg/kg bw of AFB₁. As the single dose model, *C. asiatica* extract may alter the AFB₁-metabolism as demonstrated either by acceleration of AFB₁-albumin adduct formation or by elimination of adduct from serum. These alteration effects might be including in the preventive effects of *C. asiatica* extract. Because of reduction of AFB₁-albumin adduct accumulation as well as 8-OHdG formation in the subjects that received *C. asiatica* extract prior to co-treatment of the multiple doses of AFB₁ with the extract, administration of *C. asiatica* extract may prevent liver DNA damage resulting from AFB₁-metabolism. This preventative effect was confirmed by reduction of serum GGT activity in the extract and AFB₁ co-treated rats. Although the *C. asiatica* was able to be modulate the metabolism of AFB₁, as demonstrated by the reduction of AFB₁-albumin adduct level and reduction of oxidative liver DNA damage, these modulatory effects were affected in a dose independent manner. Thus administration of the *C. asiatica* extract at the low concentration (10 mg/ kg bodyweight) was able to prevent liver damage resulting from AFB₁-metabolism.