TABLE OF CONTENT

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT	v
บทคัดย่อ	vii
TABLE OF CONTENT	ix
LIST OF TABLES	xiii
LIST OF ILLUSTRATIONS	xiv
ABBREVIATION AND SYMBOLS	xvii
CHAPTER 1 INTRODUCTION	
CHAPTER 2 LITERATURE REVIEWS	5
2.1 Microbial exopolysaccharides	5
2.2 Exopolysaccharides from lactic acid bacteria	9
2.2.1 Classification of EPS from LAB	11
2.2.2 Biosynthesis of EPS by LAB	16
2.3 Factors affecting EPS production under SSF	19
2.4 Applications of EPS from LAB	22
2.5 Pediococcus urinae-equi	24
2.6 Solid state fermentation by using solid supports	27
2.6.1 Type of solid support	27
2.6.1.1 Agricultural waste as natural solid support	28
2.6.1.2 Synthesized material	30
2.6.2 Factors affecting EPS production under SSF condition	V ₃₂ 🛆

	Page
2.6.3 Advantages and disadvantages of SSF	33
2.7 Concluding remark	36
CHAPTER 3 MATERIALS AND METHODS	37
3.1 Materials	37
3.1.1 Bacterial strains	37
3.1.2 Culture medium	37
3.1.3 Solid support materials	38
3.1.4 Medium and chemical reagents	39
3.1.5 Equipment	40
3.2 Methods	42
3.2.1 Inoculum preparation	42
3.2.2 Fermentation procedure	42
3.2.3 Optimization of fermentation process parameters for	
EPS production under solid support culture	45
3.2.3.1 Optimization of fermentation process parameters	
on agar plate culture	45
3.2.3.2 Optimization of fermentation process parameters	
using rice husk as solid support	48
3.2.4 Recovery and quantity of cell dry weight and native EPS	. 54
3.2.4.1 Products obtained from submerged culture	54
3.2.4.2 Products obtained from agar culture, terra-cotta culture	
and paper put on cellulose sponge culture	55
3.2.4.3 Products obtained from plastic beads culture, polystyrene sponge	
culture and agricultural waste culture	55
3.2.5 Analytical methods	56
3.2.6 Statistic analysis	58

	Page
PTER 4 RESULTS AND DISCUSSIONS	59
4.1 Growth curve and EPS production from P. urinae-equi	
TISTR 1499 in MRS medium	59
4.2 Growth curve and EPS production from P. urinae-equi	
TISTR 1499 under MRS agar medium plate culture	60
4.3 EPS production from P. urinae-equi TISTR 1499	
on various inert solid supports	62
4.4 Optimization of fermentation process parameters for	
EPS production on agar plate culture	65
4.4.1 Effect of moist-air supplement on EPS production	
on agar plate culture	65
4.4.2 Effect of moist-air flowrate, MRS agar medium volume	
and incubation time on EPS production under agar plate culture	67
4.4.3 Effect of initial sucrose concentration on EPS production	
under agar plate culture	71
4.5 EPS production from P. urinae-equi TISTR 1499	
cultured on agricultural solid waste support	73
4.6 Optimization of fermentation process parameters for	
EPS production on rice husk support culture	78
4.6.1 Effect of rice husk to MRS medium ratio on EPS production	78
4.6.2 Effect of inoculum size on EPS production on rice husk support culture	79
4.6.3 Effect of moist-air supplement on EPS production	
on rice husk support culture	81
4.6.4 Effect of initial sucrose concentration on EPS production	
on rice husk support culture	82
4.6.5 Effect of nitrogen sources on EPS production on rice husk support culture	83

	Page
CHAPPER 5 CONCLUSIONS	90
REFERENCE	93
APPENDIX A:	93
Reducing sugar determination by DNS method	106
APPENDIX B:	
ANOVA analysis	108
APPENDIX C:	- 10
ANOVA for response surface quadratic model of CCD for optimize moist-air flowrate,	
MRS agar medium volume and incubation time on EBS and dusting an actualization and actualization actualization and actualization and actualization a	114
APPENDIX D:	
ANOVA for mixture quadratic model for optimize nitrogen sources concentration	
on EPS production on rice busk support sultima	17
CURRICULUM VITAE	20

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
2.1 EPS from microorganisms	7 age
2.2 EPS-producing LAB and bifidobacteria strains	9
2.3 Classification of EPS from LAB	13
2.4 Factors affecting EPS production	20
2.5 Application of microbial EPS	23
2.6 Products by using agricultural waste for SSF	29
2.7 Products by using synthesized solid support for SSF	31
3.1 Variables and their levels for CCD	47
3.2 Treatment schedule for a three-factor CCD	49
3.3 Treatment schedule for a four-factor mixture design using rice husk as solid support	51
4.1 Kinetic parameters of P. urinae-equi TISTR 1499 cultured on various inert	
solid supports	64
4.2 Results of fermentation experiments done to optimize EPS production by	
P. urinae-equi TISTR 1499 on agar plate culture	68
4.3 The optimum conditions for EPS production by P. urinae-equi TISTR 1499	00
on agar plate culture	73
4.4 Kinetic parameters of P. urinae-equi TISTR 1499 cultured on various agricultural	73
solid waste supports	0.M
4.5 Results of mixture design for investigation of nitrogen source affecting EPS	,,,
production by P. urinae-equi TISTR 1499 on rice husk as solid support	versit
4.6 The optimum conditions for EPS production by P. urinae-equi TISTR 1499 on	04
rice husk culture	V C
	89

LIST OF ILLUSTRATIONS

Page
12
17
19
26
26
46
46
53
+]]
53
60
61
61
65
2
69
ersi
70

Fig.	Page
4.7 Respond surface result, three-dimensional plots and contour plots of EPS	
production by P. urinae-equi TISTR 1499 at the incubation time at 24 h as a function	
of the MRS agar medium volume (mL) and moist-air flowrate (mL/min)	70
4.8 Effect of various initial sucrose concentration on fermentation profile of	
P. urinae-equi TISTR 1499 on MRS agar plate cultivation	72
4.9 Cell growth, EPS production and sucrose concentration after incubation of	
P. urinae-equi TISTR 1499 on various agricultural solid waste supports	74
4.10 Effect of rice husk to MRS medium ratio on fermentation profile of	
P. urinae-equi TISTR 1499	78
4.11 Effect of inoculum size on fermentation profile of P. urinae-equi TISTR 1499	
cultured on rice husk support	80
4.12 Effect of moist-air supplement on fermentation profile of	
P. urinae-equi TISTR 1499 cultured on rice husk support cultivation	81
4.13 Effect of various initial sucrose concentrations (g/L) on fermentation profile	
of P. urinae-equi TISTR 1499 cultured on rice husk support culture	83
4.14 Respond surface result, three-dimensional plots and contour plots of EPS	
production by P. urinae-equi TISTR 1499 at the yeast extract concentration of	
0.43 % (w/v) as a function of X1, diammonium hydrogen citrate (% w/v);	
X2, meat extract concentration (% w/v) and X3, bacto-peptone concentration (% w/v)	85
4.15 Respond surface result, three-dimensional plots and contour plots of EPS	
production by P. urinae-equi TISTR 1499 at the meat extract concentration of	
0.43 % (w/v) as a function of X1, diammonium hydrogen citrate (% w/v);	
X2, yeast extract concentration (% w/v) and X3, bacto-peptone concentration (% w/v)	iversity

Fig.	Page
4.16 Respond surface result, three-dimensional plots and contour plots of EPS	-
production by P. urinae-equi TISTR 1499 at the bacto-peptone concentration of	
0.43 % (w/v) as a function of X1, diammonium hydrogen citrate (% w/v);	
X2, yeast extract concentration (% w/v) and X3, meat extract concentration (% w/v)	86
4.17 Respond surface result, three-dimensional plots and contour plots of EPS	
production by P. urinae-equi TISTR 1499 at the diammonium hydrogen citrate of	
0.21 % (w/v) as a function of X1, yeast extract concentration (% w/v);	
X2, meat extract concentration (% w/v) and X3, bacto-peptone concentration (% w/v)	86
A1 Standard curve of sucrose concentration	107

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATION AND SYMBOLS

A Absorbance

ANOVA Analysis of variance

CCD Central Composite Design

C.V. Coefficient of variation

df or DF Degree of freedom

EPS Exopolysaccharide

etc. et cetera (and so on)

Gram

g

mm

GRAS Generally Recognized As Safe

g/L Gram per liter

h Hour

i.e. id est (This is)

L Liter

LAB Lactic acid bacteria

mg Milligram

min Minute

mL Milliliter

MRS Man, Rogosa and Sharpe medium

MS Mean square

n Number

N Normal

Millimeter

nm Nanometer

Prob > F Probability of a larger F-value

REP	Replication
rpm	Round per minute
SCP	Single cell protein
ss 908	Sum of square
SSF	Solid state fermentation
TRT	Treatment
v/v	Volume by volume
w/v	Weight by volume
μт	Micrometer
°C	Degree Celsius
α	Alfa
β	Beta
±	Deviation
× _g	Revolve by gravity force
<	Less than
ш	Specific growth rate
$\mu_{ ext{max}}$	Maximum specific growth rate
q_p	Specific rate product formation
q_s	Specific rate substrate consumption
Y _{x/s}	The yield coefficient of biomass from substrate
Y _{p/s}	The yield coefficient of product from substrate
$\mathbf{Y}_{\mathbf{p}/\mathbf{x}}$	The yield coefficient of product from biomass
Ar onvright hy	The differential of EPS yield
Δs	The differential of sucrose concentration
Δx II right	The differential of cell dry weight