TABLE OF CONTENTS

Title O O O O O O O O O O O O O O O O O O O	Page
Acknowledgements	iii
Abstract (English)	iv
Abstract (Thai)	v
Table of Contents	vi
List of Tables	ix
List of Illustrations	x
Abbreviations	xiii
Chapter 1 Introduction	
1.1) Affinity capillary electrophoresis (ACE)	1
1.1.1) Capillary electrophoresis (CE)	1
1.1.2) Affinity capillary electrophoresis (ACE)	4
1.1.3) Applications of ACE	6
1.2) Synthesis	11
1.2.1) Solid phase peptide synthesis (SPPS)	rsit
1.2.2) Nonpeptide compounds synthesis	13
1.3) Biological activity assay: Measurement of intracellular calcium	18
concentration ([Ca ²⁺] _i assay)	
1.4) Literature reviews	23
1.5) Purpose of the study	25

Title	Page
Chapter 2 Materials and methods	
2.1) Construction of CHO-K1 cell line over-expressing endothelin receptor A	27
and ligand binding assay	
2.2) Preparation of a cell-immobilized capillary column	27
2.3) Samples and reagents	29
2.3.1) Cyclical peptide synthesis	29
2.3.2) The active herbal components	30
2.3.3) Nonpeptide (I): Carbazolothiophene-2-carboxylic acid derivatives	30
2.3.4) Nonopeptide (II): 1,4-Benzodiazepine-2,5-diones derivatives	33
2.3.5) Measurement of intracellular calcium concentration ([Ca ²⁺] _i assay)	41
Chapter 3 Results and discussion	
3.1) Identification of transfected CHO cell	43
3.2) Validation of peptide ligands	44
3.3) Validation of nonpeptide ligands	48
3.4) Validation of active herbal components	50
3.5) ET _A antagonists nonpeptides (I): Carbazolothiophene-2-carboxylic acid	53
derivatives C hy Chiang Mai I Inive	
3.6) ET _A antagonists nonpeptides (II): 1,4-benzodiazepine-2,5-diones	56
derivatives	
3.6.1) Liquid-phase synthesis	56
3.6.2) Polyethylene resin-bound liquid-phase synthesis	58

Title	Page
Chapter 4 Conclusion	
4.1) CE with immobilized cells for drugs screening	59
4.2) ET _A antagonists nonpeptides (I): Carbazolothiophene-2-carboxylic acid	61
derivatives	
4.3) ET _A antagonists nonpeptides (II): 1,4-benzodiazepine-2,5-diones	62
derivatives	
References	65
Appendix: Supporting Papers	83
Capillary electrophoresis using immobilized whole cells with	
overexpressed endothelin receptor for specific ligand screening	84
2. Carbazolothiophene-2-carboxylic acid derivatives as endothelin	
receptor antagonists	92
3. Solution structure of a K-channel blocker from the scorpion	
Tityus cambridgei	96
4. Phosphorylation of the 24p3 protein secreted from mouse uterus	
in vitro and in vivo	107
5. Enhancing the hypotensive effect and diminishing the cytolytic	
activity of homet mastoparan B by D-amino acid substitution	114
·	
Vita	120

LIST OF TABLES

l'able		Page
4.1	The percentage of relative inhibition of induced increasing [Ca ²⁺] _i	
	concentration and the retention time of ACE method (a capillary colum	
	with the stationary phase of immobilized ETA overexpression CHO	
	cells) for the evaluated compounds	61
4.2	The percentage of relative inhibition of induced increasing [Ca ²⁺] _i	
	concentration for the 7-22 of carbazolothiophene-2-carboxylic acid	
	compounds	62
4.3	The percentage of relative inhibition of induced increasing [Ca ²⁺] _i	
	concentration for the 23-61 of 1,4-benzodiazepine-2,5-dione compounds	64

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure		Page
1.1	Schematic of a system for capillary electrophoresis	1
1.2	Diagramatic representation of (A) capillary zone electrophoresis (CZE),	
	(B) capillary gel electrophoresis (CGE), (C) micellar electrokinetic	
	capillary chromatography (MEKC), and (D) capillary electro-	
	chromatography (CEC). V_x is the linear migration velocity of the	
	analyte X. V_{eo} is the electroosmotic velocity, V_{ep} is the electrophoretic	
	velocity and k' is the phase capacity ratio	3
1.3	A capillary electrophoresis of single-cell biosensor (CE-SCB) systems	7
1.4	The biological events are triggered by receptor-ligand interactions	8
1.5	The examined substrates: peptides: ET-1(16-21), BQ123, JKC302 and	
	ET-1 and nonpeptide compounds: SB209670, JMF310, YHK891 and	
	active herbal components Magnolol, Honokiol and Geniposide in this	
	study	10
1.6	The Scheme of solid phase peptide synthesis	14
1.7	Some representative endothelin receptor antagonists constructed by the	
	Indole, indan and thiophene scaffolds	15
1.8	Carbazolothiophene-2-carboxylate derivatives	16
1.9	1,4-Benzodiazepine-2,5-dione derivatives bearing carboxylic groups are	
	designed to mimic the endothelin receptor antagonist SB209670, which	
	contains two aryl substituents flanking the nearly; lanar core of indan ring	g 18
1.10	Intracellular signaling	19

Figure		Page
1.11	The mediation of endothelin to the contraction of blood vessel via the	
	consequent intracellular messenger	20
2.1	Liquid-phase synthesis of carbazolothiophene-2-carboxylic acid	
	derivatives	32
2.2	Liquid-phase synthesis of 1,4-benzodiazepine-2,5-dione dimetyl ester	
	derivatives	34
2.3	Polyethylene resin-bound liquid-phase synthesis	36
3.1	I ¹²⁵ endothelin 1binding assay was performed with a synthetic endothelin	
	1 (ET-1). The binding affinity of transfected CHO cell-line was established	1
	with Kd =1.516 nM, and the Bmax was estimated at 6.29×10^5 sites/cell	44
3.2	Affinity capillary electrophoresis of peptides JKC 302, BQ123, and ET-1	
	on a column: (a) uncoated column; (b) coated poly-L-Lysine; (c) coated	
	with fixed ET _A -overexpressing CHO cells	46
3.3	Fluorescence measurements of intracellular calcium concentration	
	([Ca ²⁺] _i) by addition of tested samples (as shown by the arrow) to the	
	ET _A -overexpressing CHO cells in the presence of fura-2	47
3.4	Affinity capillary electrophoresis of a mixture of SB209670, JMF310 and	
	YHK891 on a capillary column coated with fixed ET _A -overexpressing	
	CHO cells	49
3.5	Fluorescence measurements of intracellular calcium concentration	
	([Ca ²⁺] _i) by addition of tested samples (as shown by the arrow) to the	
	ET _A -overexpressing CHO cells in the presence of fura-2	50

Figure	e	Page
3.6	Screening of Chinese herbal active components Magnolol, Honokiol and	
	Geniposide by affinity capillary electrophoresis on a capillary column	
	coated with fixed ET _A -overexpressing CHO cells	51
3.7	Fluorescence measurements of intracellular calcium concentration	
	([Ca ²⁺] _i) by addition of tested samples (as shown by the arrow) to the	·
	ET _A -overexpressing CHO cells in the presence of fura-2	52
3.8	A series of carbazolothiophenes 11-12 were similarly prepared, initially	
	by the SmI ₂ -promoted three-component coupling reactions with	
	appropriate partner substrates	54
3.9	Fluorescence measurements of intracellular calcium concentration	
	([Ca ²⁺] _i) by addition of tested samples to the ET _A -overexpressing CHO	
	cells in the presence of fura-2	55
3.10	Fluorescence measurements of intracellular calcium concentration	
	([Ca ²⁺] _i) by addition of tested samples to the ET _A -overexpressing CHO	
	cells in the presence of fura-2	57
3.11	A series of 1,4-Benzodiazepine-2,5-diones 34-61 were similarly prepared	b = -
	and fluorescence measurements of intracellular calcium concentration	
	([Ca ²⁺] _i) Chiang Mai Unive	58
4.1	Correlation between the retention time of the examined compound on	
	the capillary column coated with ETA-overexpression CHO cells and	
	the relative inhibition of the ET-1 induced increase of intracellular	
	calcium ion concentration	60

ABBREVIATIONS

ACN acetonitrile

Boc N^α-tert-butyoxycarvonyl

DCM dichloromethane

DIEA N,N-diisopropylethylamine

DMF N,N-dimethyl formamide

EDT 1,2-ethanedithiol

Fmoc N^{α} -9-fluorenylmethyloxycarvonyl

NMP N-methylmorpholine

SPPS solid phase peptide synthesis

TFA trifluoroacetic acid

ACE affinity capillary electrophoresis

CE capillary electrophoresis

CHO cell Chinese hamster ovary cell

ET endothelin

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved