TABLE OF CONTENTS

· 41818169	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
LIST OF TABLES	xiii
LIST OF ILLUSTRATIONS	xiv
ABBREVIATIONS AND SYMBOLS	xviii
1. INTRODUCTION	1
1.1 Overview of the Research	1
1.2 Speciation of Elements	3
Speciation analysis techniques	5
1.3 Field-flow Fractionation	8
Asymmetric flow field-flow fractionation	11
1.4 Anodic Stripping Voltammetry	14
Copyrig.5 Flow-based Analysis Chiang Mai Univer	
1.5.1 Flow injection analysis PESELV	20
1.5.2 Sequential injection analysis	26

1.6 Leaching of Metals from Coal-mining Disposal Soil	30
1.7 Research Aims	31
1.8 The Relevance of the Research Work to Thailand	32
2. EXPERIMENTAL	33
2.1 Chemicals and Reagents	33
2.2 Equipment/Apparatus	35
2.3 Instrumentation for On-line Systems	37
2.3.1 Asymmetric flow field-flow fractionation-	
inductively coupled plasma-mass spectrometry	37
2.3.2 Anodic stripping voltammetry	40
2.3.3 Flow injection analysis-anodic stripping voltammetry	43
2.3.4 Sequential injection analysis-anodic stripping voltammetry	46
2.3.5 Homemade UV digestion unit	51
2.4 Characterization of Coal-mining Disposal Soil Samples	52
2.4.1 Size distribution of the soil samples by sieving	52
2.4.2 Mineralogical characterization	52
2.4.3 Elemental analysis	52
2.4.4 Total carbon analysis	53
2.5 Leaching of Contaminated Soil C S C V C	53
2.6 Formation of Metal-Humic Acid Colloids	54
2.6.1 Model system	54
2.6.2 Artificial system	55

Х

3. RESULTS AND DISCUSSION	56	
3.1 On-line Size-based Element Speciation for Coal-mining Disposal		
Soil Sample in Thailand for the Study of the Release of Heavy Metals		
Into the Environment	56	
3.1.1 Coal-mining overburden soil samples	56	
3.1.2 Leaching of the coal-mining overburden soil	62	
3.1.3 On-line size-based element speciation	64	
(A) Colloid size distribution in the mixture of the leachate		
and humic acid solution	64	
(B) Metal ions associated with colloids	67	
3.2 Development of the Flow Injection Analysis-Anodic Stripping		
Voltammetry 77		
3.2.1 On-line preparation of mercury film electrode	77	
3.2.2 Optimization of the FIA-ASV system	79	
A) Acetate buffer concentration	79	
adansu B) Sample volume a su 8 stal 1	81	
C) Flow rate	82	
D) Mixing coil length	83	
3.2.3 Performance of the developed FIA-ASV system	84	
3.2.4 Application to model samples	86	
3.3 Development of the Sequential Injection Analysis-Anodic Stripping		
Voltammetry	88	

PA	GE
----	----

3.3.1 Preliminary study of the SIA-ASV system	89		
3.3.2 Development of the SIA-ASV system	91		
A) Modification of autotitrator	92		
B) Sample volume	96		
C) Operation sequence	97		
D) On-line standard addition	99		
3.3.3 Performance of the developed SIA-ASV system <i>II</i>	101		
3.3.4 Application to model samples	102		
3.4 Suggestions for Further Investigation 104			
4. CONCLUSIONS 105			
REFERENCES 107			
APPENDICES 114 APPENDIX A In-house Written Software for Controlling			
the Developed Sequential Injection Analysis-			
Anodic Stripping Voltammetry (SIA-ASV) System	115		
APPENDIX B Microwave-assisted Digestion	117		
Copcurriculum vitae Chiang Mai Univers	121		
All rights reserve	d		

LIST OF TABLES

TABLE	ે ગંમાં મંધ્ર	PAGE
1.1 \$	some size-based element speciation techniques	7
1.2 S	Some examples of flow-based analysis (FBA) with	
44 V	Voltemmetric detection for trace metal determination	24
2.1 I	CP-MS parameters	40
2.2 0	Operating step of batch analysis with standard addition	
I	method by the voltammograph	42
2.3 V	Voltammetric parameters	43
3.1 - S	EM results, using back-scattered electron technique	59
3.2 E	Element concentrations and carbon content in the soil samples determine	ed
b	y ICP-MS after digestion using microwave-assisted method	61
3.3 S	Summary of calibration data obtained by the FIA-ASV system	85
3.4 A	Analyses of model samples by the FIA-ASV system	88
3.5 0	Calibration data of the preliminary SIA-ASV system	91
3.6 S	SIA-ASV operation sequences	98
Copy _{3.7} c	Calibration data obtained by the SIA-ASV system II	101
A 3.8 A	Analysis results and recoveries of Cd(II), Pb(II) and Cu(II) in the model	d
Si	amples obtained by the SIA-ASV system <i>II</i>	103

LIST OF ILLUSTRATIONS

]	FIGU	RE ABERA	PAGE
	1.1	The field-flow fractionation (FFF) channel	9
	1.2	The separation in the FFF channel	10
	1.3	Asymmetric flow field-flow fractionation (AF ⁴) channel setup	11
	1.4	Separation in the asymmetric FIFFF channel	12
	1.5	Diagram of an electrochemical cell for a voltammetric system	15
	1.6	Operating steps of stripping voltammetric method	16
	1.7	Square wave waveform	18
	1.8	Measuring current in SWV	19
	1.9	Diagram of a simple FIA	21
	1.10	Dispersion in FIA	22
	1.11	A simple SIA system	27
	1.12	Zone penetration in SIA system	28
ลิส	2.1	(a) The asymmetric flow field-flow fractionation (AF ⁴) system	
GU		(b) The AF ⁴ coupled with ICP-MS system Volammograph	38
Сор	2.2	Voltammographs; (a) Bioanalysis System, (b) Metrohm	SIL ₄₁
A	2.3	Schematic diagram of the FIA-ASV system	44
	2.4	Components of the electrochemical flow-cell	
		used in the FIA-ASV system	44
	2.5	Diagram of the SIA-ASV system for preliminary study	47

FIGURE

PAGE

2.6 The diagram of the developed SIA-ASV system II	49
2.7 (a) Electrochemical flow-cell for the SIA-ASV system <i>II</i> and	
(b) the flow channel	50
2.8 The homemade UV digestion unit	51
3.1 Size distribution in the soil samples by sieving	57
3.2 Elemental contents in the different sizes of the soil samples analyze	ed
by XRF	58
3.3 XRD spectra of the BP2 and LN1 samples	60
3.4 Some heavy metals found in the artificial rainwater and	
humic acid leachate solutions obtained from leaching of soil sample	e 63
3.5 Fractograms of the L:HA mixtures	66
3.6 The pH of the Fe(III):humic acid solution, effective diameter of	
the colloids in the solutions at the different ratios as determined	
by photon correlation spectroscopy (PCS)	68
3.7 Dissolved organic carbon (DOC) and Fe concentration	
in the Fe(III):humic acid solutions	69
3.8 DOC in the Fe(III):humic acid solutions at different pH values	70
3.9 Fe concentration in the Fe(III):humic acid solution	ersity
A lat the different pH values S reserv	e 71
3.10 (a) Fe distributions on humic acid colloids characterized	
by the AF ⁴ -ICP-MS system	73

FIGURE

PAGE

(b) Al distributions on humic acid colloids characterized	
by the AF ⁴ -ICP-MS system	74
(c) Cu distributions on humic acid colloids characterized	
by the AF ⁴ -ICP-MS system	75
(d) Eu distributions on humic acid colloids characterized	
by the AF ⁴ -ICP-MS system	76
3.11 Stability of the on-line preplated mercury film electrode illustrating	
by the current of 100 µg/l Cd(II)	79
3.12 Effect of acetate buffer concentration	80
3.13 Effect of sample volume	81
3.14 Effect of flow rate	82
3.15 Effect of mixing coil length	83
3.16 Voltammograms of metal standards obtained by the FIA-ASV system	85
3.17 Compared voltammograms of samples (a) without UV digestion,	
(b) with UV-digestion and (c) a standard solution	87
3.18 Voltammograms of metal standards obtained by	
the SIA-ASV system I	90
3.19 Components of the 665Dosimat autotitrator	92
3.20 (a) The autotitrator with the default 3-way switching valve	C
(b) The modified autotitrator with a 3-way solenoid valve	93
3.21 (a) Working steps of the default 3-way valve of the autotitrator	
(b) Working steps of the replaced 3-way solenoid valve	95

FIGURE

- 3.22 Aspirated solution in holding coil963.23 Standard addition graph of a known-standard sample solution100
- 3.24 Standard addition graph of a sample solution 100
- 3.25 Voltammograms of metal standards obtained by the SIA-ASV system II
 - with standard addition method

102

PAGE

âdânร์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

xvii

ABBREVIATIONS AND SYMBOLS

	AAS	atomic absorption spectrometry
	AE	auxiliary electrode
	Asym.FlFFF, AF ⁴	asymmetric flow field-flow fractionation
	ASV	anodic stripping voltammetry
	DO	detector
	FBA	flow-based analysis
	EFFS	field-flow fractionation
	FIA	flow injection analysis
	HMDE	hanging mercury drop electrode
	НС	holding coil
	ICP-AES	inductively coupled plasma-atomic emission spectrometry
	ICP-MS	inductively coupled plasma-mass spectrometry
	LIBD	laser-induced breakdown detector
	MALLS	multiangle laser light scattering detector
ິລາ	MFE	mercury film electrode
	PCS	photon correlation spectroscopy
Co	RC	reaction coil mang Mai University
A	RE	reference electrode reference electrode
	SIA	sequential injection analysis
	SV	stripping voltammetry
	SWASV	square wave anodic stripping voltammetry

xviii

SWV	square wave voltammetry
TXRF	total reflection X-ray fluorescence
WE	working electrode
C_A	concentration of analyte
C	concentration of the dispersed solution zone
C	original concentration of the interested solution
C ^{max}	concentration of the injected solution at the peak maximum
a 2	of the dispersed zone
D_p	dispersion coefficient
H	peak height of the original concentration of the interested
	solution
H ^{max}	maximum peak height of the dispersed zone
p	zone penetration
Wr	baseline width of reagent peak
Ws	baseline width of sample peak
Wo	baseline width of the zone overlap
E	potential
ຄົ້ມສຶກຄິ້ມ	reurrent วิทยาลัยเสียงใหม่ไ
id	diffusion current
Copyright @	forward pulse current 8 Mail University
	peak current S reserved
E_p	peak potential
<i>i</i> _r	reverse pulse current
t_d	deposition time

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved