TABLE OF CONTENTS

	. กุมยนต์ .	Page
	ACKNOWLEDGEMENTS	iii
	ABSTRACT (ENGLISH)	iv
	ABSTRACT (THAI)	vi
	TABLE OF CONTENTS	viii
	LIST OF TABLES	xii
	LIST OF ILLUSTRATIONS	XV
	ABBREVIATIONS AND SYMBOLS	xviii
	CHAPTER 1 : INTRODUCTION	
	1.1 Preconcentration/sample pretreatment using flow injection system	1
	with column technique	
	1.1.1 Preconcentration	1
	1.1.2 Sample pretreatment	3
	1.2 Importance of some cation (Cd, Cu, Pb and Zn) determinations	6
66	1.3 Analytical methods for cadmium, copper, lead and zinc determination	7
Сог	with preconcentration	rsitv
	1.4 Liquid-core waveguide sensor	13
	1.5 Aromatic compounds (benzene, toluene and xylene) determination	14
	and analytical methods	
	1.6 Research aims	17
	1.7 The relevance of the research work to Thailand	18

TABLE OF CONTENTS (CONTINUED)

	Page
CHAPTER 2 : EXPERIMENTAL	
2.1 Chemicals	19
2.2 Preparation of solutions	20
2.2.1 Standard solutions and reagents	20
2.2.2 Sample preparation	23
2.3 Preparation of Chelex-100 resin mini-column	24
2.4 Apparatus and instrumental setup	25
2.4.1 Flow injection system with in-valve ion exchanger mini-column	25
for preconcentration of cadmium, copper, lead and zinc	
determination coupled to flame atomic absorption spectrometer	
2.4.2 Flow injection in-valve mini-column pretreatment combined	27
with ion chromatography for cadmium, lead and zinc determination	
2.4.3 On-line preconcentration and quantitation of benzene, toluene	30
and <i>p</i> -xylene by using Raman liquid-core waveguide sensor	ใหม่
CHAPTER 3 : RESULTS AND DISCUSSION	
3.1 Flow injection system with in-valve ion exchanger mini-column	35
for preconcentration of cadmium, copper, lead and zinc determination	e d
coupled to flame atomic absorption spectrometer	

TABLE OF CONTENTS (CONTINUED)

	Page
3.1.1 Optimization of FI system with in-valve column	35
3.1.1.1 Effect of elution flow rate on the elution step	35
3.1.1.2 Effect of loading flow rate on the preconcentration step	37
3.1.1.3 Effect of ammonium acetate buffer concentration	39
3.1.1.4 pH of standard/sample solution in preconcentration step	41
3.1.1.5 Counter ion form of Chelex-100 resin	41
3.1.2 Calibration	43
3.1.2.1 Conventional calibration graph	43
3.1.2.2 Single standard calibration graph	48
3.1.3 Recoveries study by using single standard calibration	61
3.1.4 Application of water samples	63
3.2 Flow injection in-valve mini-column pretreatment combined with	64
ion chromatography for cadmium, lead and zinc determination	
3.2.1 Optimization of ion chromatographic method	64
3.2.2 Combination of FI-IC system	67
3.2.2.1 Optimization of FI system with in-valve column (FI-IC)	68
3.2.2.2 Performance of the proposed method	
3.2.2.3 Analysis of zinc ore samples C S C	78
3.3 On-line preconcentration and quantitation of benzene, toluene and	80
<i>p</i> -xylene by using Raman liquid-core waveguide sensor	
3.3.1 Raman spectra of benzene, toluene and <i>p</i> -xylene	80

TABLE OF CONTENTS (CONTINUED)

	Page
3.3.2 Background-subtracted Raman spectra	83
3.3.3 Calibration graph	85
3.3.4 Limit of detection	88
CHAPTER 4 : CONCLUSIONS	
4.1 FI-in-valve ion exchanger mini-column for preconcentration of	90
cadmium, copper, lead and zinc determination coupled to FAAS	
4.2 FI-in-valve mini-column pretreatment combined with IC for	90
cadmium, lead and zinc simultaneous determination	
4.3 On-line preconcentration and quantitation of benzene, toluene	91
and <i>p</i> -xylene by using Raman liquid-core waveguide sensor	
REFERENCES	92
	00

VITA

98

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ **Copyright** © by Chiang Mai University All rights reserved

LIST OF TABLES

Tabl	e 9181819	Page
1,1	FI systems with sample pretreatment for determination of some	4
	cations	
1.2	Summary of analytical methods for determination of Cd, Cu	10
	Pb and Zn with preconcentration/sample pretreatment	
51.3	Drinking water standard and aromatic hydrocarbon	15
3.1	Effect of eluent flow rate	36
3.2	Effect of concentration of ammonium acetate buffer	40
3.3	Summary results of conventional calibration of cations	43
3.4	Conventional calibration data of Cd using a loading flow rate	44
	3 ml min ⁻¹ and loading time 1 minute	
3.5	Conventional calibration data of Cu using a loading flow rate	45
	3 ml min ⁻¹ and loading time 1 minute	
3.6	Conventional calibration data of Pb using a loading flow rate	46
ลิปส์	3 ml min ⁻¹ and loading time 1 minute	IKU
3.7	Conventional calibration data of Zn using a loading flow rate	47
	3 ml min ⁻¹ and loading time 1 minute	
A 1 3.8	Calibration data of Cd by fixing loading flow rate at 3 ml min ⁻¹ ,	49
	various loading times at different concentrations	
3.9	Calibration data of Cu by fixing loading flow rate at 3 ml min ⁻¹ ,	51
	various loading times at different concentrations	

LIST OF TABLES (CONTINUED)

Table		Page
3.10	Calibration data of Pb by fixing loading flow rate at 3 ml min ⁻¹ ,	52
	various loading times at different concentrations	
3.11	Calibration data of Zn by fixing loading flow rate at 3 ml min ⁻¹ ,	54
8	various loading times at different concentrations	
3.12	2 Single standard calibration of Cd using 0.03 μ g ml ⁻¹ Cd at loading	57
-304	time 20 to 120 seconds and constant flow rate 3 ml min ⁻¹	
3.13	Single standard calibration of Cu using 0.10 μ g ml ⁻¹ Cu at loading	58
	time 0.5 to 3.0 minutes and constant flow rate 3 ml min ⁻¹	
3.12	Single standard calibration of Pb using 0.50 μ g ml ⁻¹ Pb at loading	59
	time 10 to 70 seconds and constant flow rate 3 ml min ⁻¹	
3.15	Single standard calibration of Zn using 0.05 μ g ml ⁻¹ Zn at loading	60
	time 1.0 to 3.0 minutes and constant flow rate 3 ml min ⁻¹	
3.16	6 Recoveries study for total cations	62
3.17	Recoveries study for dissolved cations	63
3.18	Amount of cations in water samples	64
3.19	O Concentrations of tartaric acid and oxalic acid	65
3.20	Proposed conditions for FI system with in-valve mini-column	68
A 1 3.21	Effect of elapsed time	72
3.22	2 Precision of method using 1 μ g ml ⁻¹ with 40 seconds loading	73
	time (a flow rate of 3 ml min ⁻¹) yielding 36 μ g (5 replicates)	

LIST OF TABLES (CONTINUED)

ลิฮสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University AII rights reserved

LIST OF ILLUSTRATIONS

1	Figure	ે શિકાકાર છે	Page
	2.1	Ion exchange mini-column	24
	2.2	FI manifold with in-valve mini-column and FAAS	25
	2.3	FI-FAAS peak profiles	27
	2.4	Manifold of FI-IC combination	28
5	2.5	Schematic diagram of timer control for operation of valve	30
	202	in the FI-IC system	Ĩ
	2.6	A schematic diagram of the Raman LCW sensor apparatus	31
	2.7	The liquid flow cell	32
	3.1	Effect of eluent flow rate	36
	3.2	Effect of flow rate on the preconcentration step of (a) Cd,	38
		(b) Cu, (c) Pb and (d) Zn	
	3.3	Effect of acetate buffer concentration on calibration graph of	40
		copper	2 •
ลิขอ	3.4	Comparisons of Chelex-100 resin in the forms of ammonium	42
Con		and hydrogen (a) Cd, (b) Cu, (c) Pb and (d) Zn	oreity
	3.5	Conventional calibration graph of Cd	44
A	3.6	Conventional calibration graph of Cu	45
	3.7	Conventional calibration graph of Pb	46
	3.8	Conventional calibration graph of Zn	47

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
3.9	Calibration graph of Cd by various loading times at loading	50
	flow rate 3 ml min ⁻¹	
3.10	Calibration graph of Cu by various loading times at loading	52
3	flow rate 3 ml min ⁻¹	
3.11	Calibration graph of Pb by various loading times at loading	54
-3524	flow rate 3 ml min ⁻¹	
3.12	Calibration graph of Zn by various loading times at loading	56
	flow rate 3 ml min ⁻¹	
3.13	Single standard calibration of Cd	57
3.14	Single standard calibration of Cu	58
3.15	Single standard calibration of Pb	59
3.16	Single standard calibration of Zn	60
3.17	Chromatograms of cations in Milli-Q water at different	67
	concentration ratios of tartaric acid and oxalic acid as a	
ลิสสิท	mobile phase	ใหม่
3.18	Chromatograms of blank solution without cations and cations	71
Copyrig	(Cd=5 mg 1^{-1} , Pb=10 mg 1^{-1} and Zn=3 mg 1^{-1}) by using the FI	ersity
	on-line sample pretreatment	/ e d
3.19	Calibration graphs obtained by using the data from Table 3.23	75
	(a) Zn, (b) Cd and (c) Pb	
3.20	Conventional calibration graphs (a) Zn, (b) Cd and (c) Pb	76

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
3.21	(a) Three-dimensional plot of raw Raman signal during the	82
	extraction of a 70 mg l^{-1} benzene, 100 mg l^{-1} toluene and	
8	100 mg l ⁻¹ <i>p</i> -xylene mixture	
5	(b) Two-dimensional plot of this data on the Raman shift axis	
3.22	(a) Elution time profile of extraction solvent only	83
2572	(70% acetonitrile/30% water) and the extraction of 75 mg Γ^1	
205	benzene (as single analyte in sample)	0
	(b) The elution time profile of benzene after background correcti	on
3.23	Background-subtracted Raman spectrum of mixture containing	84
	70 mg l ⁻¹ benzene, 100 mg l ⁻¹ toluene and 100 mg l ⁻¹ p -xylene	
3.24	Raman spectra of samples over a concentration range	87
	10-75 mg l^{-1} of (a) benzene and (b) toluene	
3.25	Calibration graphs are shown in the intensity of the Raman	87
	signal plotted versus the concentration of benzene and toluene	
3.26	Raman spectra of a 10 mg l ⁻¹ benzene sample and representative	88
CIUCIII	haseline noise	
Copyrig	ht C by Chiang Mai Univ	ersity
AII	rights reserv	e d

ABBREVIATIONS AND SYMBOLS

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved