TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	vi
ABSTRACT (THAI)	viii
LIST OF TABLES	XV
LIST OF ILLUSTRATIONS	xvi
ABBREVIATIONS AND SYMBOLS	xxii
CHAPTER 1: INTRODUCTION	1
1.1 Introduction	1
1.2 Bismuth sodium titanate	4
1.3 The ideal powder	9
1.3.1 Fine particle size	9
1.3.2 Unagglomerated particles	10
1.3.3 Narrow particle size distribution	10
1.4 Powder praparation	11
1.4.1 Mixed oxide reaction (conventional reaction)	12
1.4.2 Sol-gel method Chiang Mai Univer	13
1.4.3 Precipitation method	16
1.4.4 Hydrothermal method	e 190
1.4.4.1 Thermodynamic modeling	19

	Page
1.4.4.2 Standard-state properties for new solids	20
1.4.4.3 Stability and yield diagrams	24
1.4.4.4 Na-Bi-Ti-H ₂ O system	28
1.5 Objective of the work	31
CHAPTER 2: EXPERIMENTAL	32
2.1 Chemicals	33
2.2 Apparatus and instruments	33
2.3 Experimental procedures	34
2.3.1 Synthesis of BNT powders	34
2.3.1.1 Preparation of the solution	34
2.3.1.2 Hydrothermal process	34
2.3.2 Synthesis of BLNT powders	36
2.3.2.1 Hydrothermal process	36
2.4 Powders characterization	38
2.4.1 X-ray Diffraction (XRD)	38
2.4.2 Scanning Electron Microscopy (SEM)	38
2.4.3 Particle Size Distribution Analysis	39
2.5 Ceramics characterization	S 39
2.5.1 Ceramics preparation S	2 39
2.5.2 X-ray Diffraction (XRD)	40
2.5.3 Scanning Electron Microscopy (SEM)	40
2.5.4 Measurement of density	40

	Page
CHAPTER 3: RESULTS AND DISCUSSION	42
3.1 Powders characterization	42
3.1.1 Crystalline structure determination	42
3.1.1.1 BNT powders from hydrothermal process	42
3.1.1.1.1 Effect of holding period at 200 °C	42
3.1.1.1.2 Effect of holding period at 150 °C	44
3.1.1.1.3 Effect of holding period at 175 °C	46
3.1.1.1.4 Effect of holding period at 200 °C	48
3.1.1.5 Effect of synthesis temperature and mineralizer	
concentration with holding period of 5 hours	50
3.1.1.1.6 Effect of synthesis temperature and mineralizer	
concentration with holding period of 15 hours	52
3.1.1.7 Effect of synthesis temperature and mineralizer	
concentration with holding period of 20 hours	54
3.1.1.2 BLNT powders from hydrothermal process	56
3.1.2 Microstructure analysis	60
3.1.2.1 BNT powders from hydrothermal process	60
3.1.2.1.1 Effect of holding period at 200 °C	60
3.1.2.1.2 Effect of holding period at 150 °C	62
3.1.2.1.3 Effect of holding period at 175 °C	64
3.1.2.1.4 Effect of holding period at 200 °C	66
3.1.2.2 BLNT powders from hydrothermal process	69

	Page
3.1.3 Particle size distribution analysis	72
3.1.3.1 BNT and BLNT powders from hydrothermal process	72
3.2 Ceramics characterization	76
3.2.1 Densification of BNT and BLNT ceramics	76
3.2.2 XRD patterns of BNT ceramics	79
3.2.3 Effect of sintering time on XRD patterns of BLNT ceramics	
with different mole %La	81
3.2.4 Effect of sintering time on XRD patterns of BLNT ceramics	
with different mole %La	83
3.2.5 Microstructure of BNT ceramics	85
3.2.6 Microstructure of BLNT ceramics sintered at 800 °C	
with different mole %La	88
3.2.7 Microstructure of BLNT ceramics sintered at 900 °C	
with different mole %La	90
3.2.8 Microstructure of BLNT ceramics sintered at 1000 °C	
for 2 hours with different mole %La	92
3.2.9 Microstructure of BLNT ceramics sintered at 1000 °C	141 I
for 3 hours with different mole %La	94
pyright @ by Chiang Mai Univer	sity
ll rights reserv	e d

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF TABLES

Tabl	e 019191	page
1.1	The lattice parameter of three structure phase transition of BNT	7
1.2	Standard state properties of solid species in the Na-Bi-Ti hydrothermal	
	systems	24
/1.3	Advanced oxide powder process comparison	30
3.1	The condition for hydrothermally synthesized of BNT	
50	and BLNT powders	58
3.2	Comparison the particle size of BNT powders from different process	68
3.3	Comparison the particle size of BLNT powders from different process	71
3.4	Comparison the particle size of BNT and BLNT powders from particle	
	size distribution analysis	75
3.5	The measured density, % theoretical density, and % porosity of BNT	
	and BLNT ceramics obtained from hydrothermal process	77
3.6	The comparison of the average grain size and theoretical density (%)	
	of BNT ceramics from different processes	78
3.7	The comparison of average grain size and theoretical density (%)	N
Copyr	of BLNT ceramics from different processes	87
AII	rights reserve	d

LIST OF ILLUSTRATIONS

Figure	e 019191	Page
1.1	Basic structural unit of perovskite BNT	4
1.2	Octahedral framework with an A atom lie at the center of the unit cell	5
1.3	Phase diagram of $(Na_{1/2}Bi_{1/2})TiO_3$ -PbTiO ₃ near $(Na_{1/2}Bi_{1/2})TiO_3$	8
1.4	Solubility curves for various types of crystallinzation systems:	
10/	curve A, isothermal solubility; curve B, positive temperature coefficient	
\$10}E	of solubility; curve C, negative temperature coefficient of solubility	17
1.5	Calculated stability and yield diagram in the Na-Bi-Ti-H ₂ O system	
	at 200 °C as a function of solution pH. The symbols denote	
	experimental conditions for which the following products were obtain	ied:
	o, $Bi_4Ti_3O_{12} + TiO_2$; \Box , $Bi_4Ti_3O_{12} + TiO_2 + Na_{0.5}Bi_{0.5}TiO_3$;	
	and ●, Na _{0.5} Bi _{0.5} TiO ₃	25
1.6	Calculated stability and yield diagram in the Na-Bi-Ti-H ₂ O system	
	at 200 °C as a function of NaOH concentration. The symbols denote	
9.	experimental conditions for which the following products were obtained:	
	o, $Bi_4Ti_3O_{12} + TiO_2$; \Box , $Bi_4Ti_3O_{12} + TiO_2 + Na_{0.5}Bi_{0.5}TiO_3$;	
	and •, Na _{0.5} Bi _{0.5} TiO ₃ // Chiang Mai Univers	27
2.1	Schematic diagram for the preparation of BNT powders by hydrothermal	ď
	process	36

Figure		Page
2.2	Schematic diagram for the preparation of BLNT powders by hydrotherma	ıl
	process	37
3.1	XRD patterns of BNT powders synthesized by hydrothermal process	
	at 200 °C using 10 M NaOH as a mineralizer with different holding	
	periods of (a) 5 h, (b) 10 h, (c) 15 h, and (d) 20 h	43
3.2	XRD patterns of BNT powders synthesized by hydrothermal process	
0	at 150 °C using 12 M NaOH as a mineralizer with different holding	
-30%	periods of (a) 5.45 h, (b) 10 h, (c) 15 h, (d) 20 h and (e) 25 h	44
3.3	XRD patterns of BNT powders synthesized by hydrothermal process	
	at 175 °C using 12 M NaOH as a mineralizer with different holding	
	periods of (a) 5 h, (b) 10 h, (c) 20 h, and (d) 30 h	46
3.4	XRD patterns of BNT powders synthesized by hydrothermal process	
	at 200 °C using 12 M NaOH as a mineralizer with different holding	
	periods of (a) 5 h, (b) 15 h, (c) 20 h, and (d) 45 h	48
3.5	XRD patterns of BNT powders synthesized by hydrothermal process	
	with holding period of 5 h using 10-12 M NaOH as	
A	a mineralizer at different synthesis temperature (a) 10 M, 200 °C,	
	(b) 12 M, 150 °C, (c) 12 M, 175 °C, and (d) 12 M, 200 °C	50
3.6	XRD patterns of BNT powders synthesized by hydrothermal process	ILY/
	with holding period of 15 h using 10-12 M NaOH as	O
	a mineralizer at different synthesis temperature (a) 10 M, 200 °C,	
	(b) 12 M, 150 °C, and (c) 12 M, 200 °C	52

Figur	Figure P	
3.7	XRD patterns of BNT powders synthesized by hydrothermal process	
	with holding period of 20 h using 10-12 M NaOH as	
	a mineralizer at different synthesis temperature (a) 10 M, 200 °C,	
	(b) 12 M, 150 °C, (c) 12 M, 175 °C, and (d) 12 M, 200 °C	54
3.8	XRD patterns of BLNT powders synthesized by hydrothermal process	5
1	at 200 °C with holding period of 20 h using 12 M NaOH as	
(0)	a mineralizer and different mole %La of (a) 0 %La, (b) 1 %La,	
عريد	(c) 2 %La, (d) 3 %La, (e) 4 %La, (f) 5 %La and (g) 6 %La	57
3.9	SEM micrographs of BNT powders obtained from hydrothermal proce	ess
	at 200 °C using 10 M NaOH as a mineralizer with different holding	
	periods of (a) 10 h, (b) 15 h, (c) 20 h, (d) 25 h, (e) 35 h and (f) 40h	61
3.10	SEM micrographs of BNT powders obtained from hydrothermal proce	ess
	at 150 °C using 12 M NaOH as a mineralizer with different holding	
	periods of (a) 5.45 h, (b) 15 h and (c) 20 h	62
3.11	SEM micrographs of BNT powders obtained from hydrothermal proce	ess
	at 175 °C using 12 M NaOH as a mineralizer with different holding	
131	periods of (a) 5 h, (b) 10 h, (c) 25 h and (d) 30 h	64
3.12	SEM micrographs of BNT powders obtained from hydrothermal proce	ess
Dyrı	at 200 °C using 12 M NaOH as a mineralizer with different holding	
	periods of (a) 5 h, (b) 10 h, (c) 15 h, (d) 20 h, (e) 25 h (f) 40 h	O
	and (g) 60 h	66

Figure	e P	age
3.13	SEM micrographs of BLNT powders obtained from hydrothermal proc	ess
	at 200 °C with holding period of 20 h using 12 M NaOH as	
	a mineralizer and different mole %La of (a) 0 %La, (b) 1 %La,	
	(c) 2 %La, (d) 3 %La, (e) 4 %La, (f) 5 %La and (g) 6 %La	70
3.14	Particle size distribution analysis of BLNT powders obtained from	
6	hydrothermal process at 200 °C with holding period of 20 h	
(0)	using 12 M NaOH as a mineralizer and different mole %La of	
20%	(a) 0 %La, (b) 1 %La, (c) 2 %La, (d) 3 %La, (e) 4 %La, (f) 5 %La	
2015	and (g) 6 %La	72
3.15	Particle size distribution analysis of BLNT powders obtained from	
	hydrothermal process at 200 °C with holding period of 20 h	
	using 12 M NaOH as a mineralizer and different mole %La of	
	(a) 0 %La, (b) 1 %La, (c) 2 %La, (d) 3 %La, (e) 4 %La, (f) 5 %La	
	and (g) 6 %La	73
3.16	XRD patterns of sintered BNT ceramics obtained from hydrothermal	
	process sintered at 1000 °C for (a) 1 h, (b) 2 h and (c) 3 h	80
3.17	XRD patterns of sintered BLNT ceramics obtained from hydrothermal	
0	process sintered at 1000 °C for 2 h with different mole %La of	Ha.
	(a) 0 %La, (b) 1 %La, (c) 2 %La, (d) 3 %La, (e) 4 %La, (f) 5 %La	U.Y
	and (g) 6 %La h t S r e S e r v e	82

Figur	e	Page
3.18	XRD patterns of sintered BLNT ceramics obtained from hydrotherma	al
	process sintered at 1000 °C for 3 h with different mole %La of	
	(a) 1 %La, (b) 2 %La, (c) 3 %La, (d) 4 %La and (e) 5 %La	84
3.19	SEM micrographs of BNT ceramics obtained from hydrothermal	
	process at 200 °C using 12 M NaOH as a mineralizer with different	
8	sintering temperature and time of (a) 800 °C, 3 h, (b) 900 °C, 1 h,	
	(c) 900 °C, 2 h, (d) 900 °C, 3 h, (e) 1000 °C, 1 h, (f) 1000 °C, 2 h	
	and (g) 1000 °C, 3 h	86
3.20	SEM micrographs of sintered BLNT ceramics obtained from	
	hydrothermal process with sintering temperature of 800 °C for 3 h	
	and different mole %La of (a) 1 %La, (b) 2 %La, (c) 3 %La,	
	(d) 4 %La, (e) 5 %La and (f) 6 %La	89
3.21	SEM micrographs of sintered BLNT ceramics obtained from	
	hydrothermal process with sintering temperature of 900 °C for 3 h	
	and different mole %La of (a) 1 %La, (b) 2 %La, (c) 3 %La,	
	(d) 4 %La, (e) 5 %La and (f) 6 %La	91
3.22	SEM micrographs of sintered BLNT ceramics obtained from	Kal
	hydrothermal process with sintering temperature of 1000 °C for 2 h	•4
Copyri	and different mole %La of (a) 1 %La, (b) 2 %La, (c) 3 %La,	
A	(d) 4 %La, (e) 5 %La and (f) 6 %La	93

Figure Page

3.23 SEM micrographs of sintered BLNT ceramics obtained from hydrothermal process with sintering temperature of 1000 °C for 3 h and different mole %La of (a) 1 %La, (b) 2 %La, (c) 3 %La,

auansurpnerautelent Copyright © by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

Å Angstrom

AFE Antiferroelectric

a.u. Arbitary Unit

Bi Bismuth

BLNT Bismuth lanthanum sodium titanate

BNT Bismuth sodium titanate

C_{eq} Solubility

C_p Heat Capacity

°C Degree Celcius

FE Ferroelectric

h Hours

JCPDS Joint Committee for Powder Diffraction Standards

kV Kilovoltage

K_p Electromechanical Coupling Coefficient

La Lanthanum

M Molar

mA Milliampere

min minute

mm Millimeter

Mpa Magapascal

MPB Morphotropic Phase Boundary

nm Nanometer

nm³ Volume nanometer

O Oxygen

PE Paraelectric

PLZT Lead Lanthanum Zirconate Titanate

PMN Lead Magnesium Niobate

S^o Absolute Entropy at a Reference Temperature

SEM Scanning Electron Microscope

Γ Temperature

T_c Curie Temperature

Ti Titanium

V° Partial molar Volume

XRD X-ray Diffraction

 \mathcal{E}_{max} Maximum of dielectric permitivity

ε_r Dielectric Constant

ΔG_f ° Standard Gibbs Energy

 ΔH_f^o Enthapy of Formation

μm Micrometer

% Percentage