TABLE OF CONTENTS

301	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vii
TABLE OF CONTENTS	ix
LIST OF TABLES	xv
LIST OF ILLUSTRATIONS	xvii
ABBREAVIATIONS AND SYMBOLS	xix
CHAPTER 1: INTRODUCTION	1
1.1 Overview of the research	1
1.2 Heavy metals	2
1.2.1 Lead	2
1.2.2 Copper	3
1.2.3 Nickel 191818801	4
Copyright by Chiang Mai Univer	5
1.2.3 Zine	6
1.2.6 Chromium t S r e S e r V	e d
1.3 Flow-based analysis (FBA)	7
1.3.1 Flow injection analysis (FIA)	8

1.3.2 Sequential injection analysis (SIA)	11
1.4 Preconcentration and separation procedure for heavy	12
metal determination	
1.4.1 Solvent extraction	16
1.4.1.1 Extraction of some heavy metal ions with	17
diethyl-dithiocarbamate (DDC) into methy-isobutyl	
ketone (MIBK)	
1.4.1.2 Cr(III) and Cr(VI) speciation	18
1.4.2 Solid phase extraction (SPE)	22
1.4.2.1 FI on-line preconcentration for lead determination	23
1.5 Anodic stripping analysis (ASV) for arsenic speciation	24
1.5.1 Anodic stripping voltammetry (ASV)	24
1.5.2 Arsenic speciation	26
1.6 Research aims	30
CHAPTER 2: EXPERIMENTAL	31
2.1 Chemicals	31
2.2 Preparation of reagents and standard solutions	32
2.3 Instrument set ups	35
2.3.1 The set up of the automated on-line solvent extraction system	35
for some heavy metal ions determination (Cu(II), Pb(II),	A (
Ni(II), Cd(II) and Zn(II)) and Cr(III)/Cr(VI) speciation	
2.3.1.1 Operation procedure	36

2.3.1.2 Initial conditions	37
2.3.2 The set up of FI on-line preconcentration for lead	38
determination by FAAS	
2.3.3 The set up of SI- column preconcentration for iron	40
determination using FAAS	
2.3.4 The set up of SI-ASV for arsenic speciation	43
2.3.4.1 Pre-plate gold film electrode	44
2.3.4.2 As(III) determination	44
2.3.4.3 Gold-film stripping	45
2.3.4.4 Reduction of As(V) to As(III)	45
CHAPTER 3: RESULTS AND DISCUSSION	46
3.1 Automated on-line solvent extraction devices coupled with FAAS	46
3.1.1 An automated on-line solvent extraction and FAAS	46
for some heavy metal determination in soil	
3.1.1.1 Signal enhancement by using organic solvent	46
instead of aqueous solution	
3.1.1.2 The influence of the uptake rate of organic	47
solvent to signal	MU
3.1.1.3 Optimisation for an injection volume	48
3.1.1.4 Optimisation for extraction time	50
3.1.1.5 Optimisation for pause time	50

3.1.1.6 Study the carry-over effect and optimisation	51
for methanol rinsing time	
3.1.1.7 The effect of pH on signal	52
3.1.1.8 Summary of optimum conditions	54
3.1.1.9 Interference by Fe(II)	55
3.1.1.10 Precision	56
3.1.1.11 Sample preparation	56
3.1.1.12 Application	57
3.1.1.13 Characteristics of the procedure	59
3.1.2 Cr(III) and Cr(VI) speciation analysis in tap water	60
and leachate samples	
3.1.2.1 Initial conditions	60
3.1.2.2 Effect of pH	60
3.1.2.3 Effect of Cr(III)	61
3.1.2.4 Oxidation procedure	61
3.1.2.5 Ionic strength effect	62
3.1.2.6 Application	64
3.1.2.7 Characteristics of operation procedure	65
3.2 On-line preconcentration and preseparation by using a column	66
extraction procedure coupled with FAAS	e 0
3.2.1 FI on-line preconcentration for lead determination	66
3.2.1.1 Optimisation of flow rate of eluent	66

3.2.1.2 Optimisation of HNO ₃ concentration as medium solution	67
3.2.1.3 Single standard calibration	68
3.2.1.4 Application to water samples	69
3.2.2 SI-column preconcentration for iron determination	70
3.2.2.1 Carry-over effect	71
3.3 Preliminary study for SI-ASV for arsenic speciation	73
3.3.1 As(III) calibration	73
3.3.2 As(V) determination	74
3.3.3 Investigation of reducing agent	74
3.3.4 Effect of reducing agent concentration	75
3.3.5 Optimisation of reduction time	77
3.3.6 Further study	77
CHAPTER 4: CONCLUSIONS	78
REFERENCES	81
APPENDICES	88
APPENDIX A	89
Speciation of Fe(II)/Fe(III) using flow injection spectrophotometry	
with 1,10- phenanthroline	MU
Dyrigappendix B by Chiang Mai Univer	96
Sequential injection analysis for paracetamol determination	e d
APPENDIX C	105

Flow injection spectrometric determination of nitrite

APPENDIX D	110
The extraction of nitrite from sausage sample by sonication	
APPENDIX E 3 2 3 6	114
Conditions for anodic stripping voltammetry for arsenic	
speciation (batch procedure)	
CURRICULUM VITA	116
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND	122
Signal Si	

LIST OF TABLES

กมยนด	
Table 1.1 The on-line preconcentration/separation methods	Page
1.1 The on-line preconcentration/separation methods	13
for heavy metals determination	
1.2 Theoretical values for extraction equilibriums for metal-DDC's into MIBK	19
1.3 A brief summary for Cr(III)/Cr(VI) speciation procedures	20
1.4 A brief review of arsenic determination	28
2.1 Initial operation procedure of the automated on-line solvent extraction	38
2.2 Sequence of SIA operation for iron determination	42
2.3 Operation steps of SI-ASV	44
3.1 Signal enhancement by using organic solvent	47
3.2 Effect of injection volume	49
3.3 Optimum conditions for the automated on-line solvent extraction unit	54
3.4 Application of the proposed method for heavy metal determination	57
in soil reference materials	
3.5 Application of the proposed method for heavy metal determination	58
in soil samples hy Chiang Mai Univer	sitv
3.6 Analytical characteristics of the automated on-line solvent extraction	59
counled with EAAS for the determination of the studied heavy metal ions	T U

3.7 The initial conditions for Cr(III) and Cr(VI) determination	60
3.8 The major elements and concentration presented in leachate	63
samples 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
3.9 Determination of Cr(III) and Cr(VI) in various mixtures of	64
standard solutions of Cr(III) and Cr(VI) at different ratios	
3.10 Determination of Cr(III) and Cr(VI) in tap water	64
3.11 Determination of Cr(III) and Cr(VI) in leachate samples	65
3.12 Analytical characteristics of the proposed method for Cr speciation	65
3.13 The initial conditions for lead determination by FI-FAAS	66
3.14 The effect of flow rate of eluent on signal	67
3.15 The effect of HNO ₃ concentration on signal	68
3.16 A study on a single standard calibration for lead determination	69
3.17 Determination of lead in water samples from an industrial estate	70
(triplicate results)	
3.18 The initial conditions for study SI-column preconcentration	71
for iron determination 3.19 Optimisation of eluent volume to minimised the carry-over effect	72
3.20 Characteristics of performance for SI-column preconcentration	73
3.20 Characteristics of performance for SI-column preconcentration for iron determination	73
CO 3.21 Optimisation of reduction time 11318 Mai University	er 37 ty
All rights reserv	

LIST OF ILLUSTRATIONS

09161916	
Figure	Page
1.1 Dispersion phenomenon and peak profile of the sample	10
zone before and after dispersion process	
1.2 The basic components of FI system	10
1.3 The basic components of SI system	11
1.4 Chemical structure of the crown ether	23
1.5 Schematic of electrochemical cell for voltammetry	24
1.6 Differential pulse waveform	26
2.1 The set up of the automated on-line solvent extraction system for FAAS	36
2.2 The manifold of FI in-valve mini-column for lead determination	39
2.3 The set up of SI-column preconcentration for iron determination	41
using FAAS	
2.4 Schematic diagram of the SIA-ASV system for arsenic speaciation	43
determination	
3.1 The influence of uptake rate of organic solvent on signal	48
for 1.0 mg l ⁻¹ Cu(II) standard solution	118
3.2 The effect of injection volume on calibration graph	49
3.3 The effect of extraction time on signal	e (
50	
3.4 The effect of pause time on signal	51

3.5 Optimisation of methanol rinsing time	52
3.6A The effect of pH on signal for Cu(II), Pb(II) and Ni(II) determination	53
3.6B The effect of pH on signal for Cd(II) and Zn(II) determination	53
3.7 Effect of Fe(II) on signal	56
3.8 The effect of pH on signal for Cr(VI) determination	61
3.9 The effect of Cr(III) on signal of Cr(VI) determination	62
3.10 The effect of ionic strength on signal for Cr(VI) determination	63
3.11 Single standard calibration for FI on-line	69
preconcentration for lead determination	
3.12 Calibration for SI- column preconcentration using Fe(II) standard solution	71
3.13 Voltammograms of As(III) determination by SI-ASV	74
3.14 Effect of reducing agent concentration to signal	76
of 100 µg l ⁻¹ As(III) determination	

auansurpneraeles l'auansurpneraeles l'auansurpnerae

ABBREAVIATIONS AND SYMBOLS

FBA flow-based analysis

FI flow injection

FIA flow injection analysis

n-FIA normal-flow injection analysis

r-FIA reverse-flow injection analysis

SI sequential injection

SIA sequential injection analysis

C⁰ original concentration of the interested solution

C^{max} concentration of the injected solution at the peak maximum of the

dispersed zone

D_p dispersion coefficient

D detector

HC holding coil

MC mixing coil

IV injection valve

P

PC personal computer

R recorder

S sample

SP syringe pump

V valve

W waste

ETAAS electrothermal atomic absorption spectrometry

FAAS flame atomic absorption spectrometry

FI-AAS flow injection-atomic absorption spectrometry

HG-AAS hydride generation-atomic absorption spectrometry

ICP-AES inductively coupled plasma-atomic emission spectrometry

ICP-MS inductively coupled plasma-mass spectrometry

LC-HG-AAS liquid chromatography-hydride generation-atomic absorption

spectrometry

ASV anodic stripping voltammetry

E potential

EC electrochemical flow-cell

GCE glassy carbon electrode

i current

RE reference electrode

WE working electrode

AE auxiliary electrode

IX ion exchange

SPE solid phase extraction

CE concentration efficiency

2/62/3

DL detection limit

EF enrichment factor

LOD limit of detection

LR linear range

DDC diethyl-dithiocarbamate

DI-water deionised-water

MIBK methyl-isobutyl ketone

Ref reference

rpm round per minute

WHO The World Health Organization

 λ_{max} wavelength of maximum absorption

 λ_{anal} analytical wavelength

#