Content

		Page
Acknowle	dgement	iii
Abstract (i	n English)	iv
Abstract (i	n Thai)	vi
Table of co	ontent 9	xi
Figure of c	content	xiv
Symbols		xviii
Chapter 1	Introduction	
	1.1 Statement and significance of the problem	Ī
	1.2 Purpose of the study	2
	1.3 Research scope	3
	1.4 Research methods	3
Chapter 2	Theories and literature review	5
•	2.1 Theories	5
	2.1.1 Types of slope failure	5
	2.1.2 Causes of slope failure	6
	2.1.3 Basic concepts applied to slope stability analysis	97 M
	2.1.4 Method of slices	11
	2.1.5 Method of discrete element	22
	2.2 Literature review	24
	2.2.1 Comparison of slope stability analysis methods	24
	2.2.2 Classification of slope stability analysis methods	30
	2.2.3 Measuring the normal forces acting on the slip surface	31
	2.2.4 Physiography, geology and slope failure in Northern Thailand	33

		Page
Chapter 3	Data of the normal forces from the model tests and data of the landslides in	
	Northern Thailand	37
	3.1 Introduction	37
	3.2 Measuring the normal forces from the model tests	37
	3.2.1 Slope models	38
	3.2.2 Experimentation	39
	3.2.3 The normal forces acting on the slip surface	40
	3.3 Data of the landslides in Northern Thailand	3 44
	3.3.1 Public highway no.1093, section Km. 29+000 - Patang village	45
	3.3.2 Mae Laeng Laung Dam, Chiang Mai	47
	3.3.3 Mountain slope in Bhuping Palace, Chiang Mai	47
	3.3.4 Mae Moh Mine, Lampang	50
Chapter 4	Case study: Doi Suthep, Chiangmai	52
	4.1 Introduction	52
	4.2 Soil sampling and field testing	52
	4.3 Laboratory testing	54
	4.4 Results of laboratory testing	55
	4.5 Assume the failure surface	58
Chapter 5	Analysis and comparison the slope stability analysis methods	63
	5.1 Introduction	63
	5.2 Slope stability analysis of slope models	63
	5.2.1 Results of the stability analysis	63 5
	5.2.2 Discussion of the analytical results	74
	5.3 Slope stability analysis of actual landslides in Northern Thailand	76
	5.3.1 Results of the stability analysis	77
	5.3.2 Discussion of the analytical results	87
	5.4 Comparison of the results of model tests and actual landslides	88

			Page
Chapter 6	Conclusion and Recommendation		90
	6.1 Conclusion		90
	6.2 Recommendation		91
References			92
Appendix			
	Appendix A The experiment of measur	ring the normal forces in the model	
	tests and the experimenta	results	95
	Appendix B Data of landslides in Nort	hern Thailand	116
	Appendix C Procedures and results of	the laboratory tests and field tests	125
	Appendix D Results of the analysis by	various slope stability analysis	
	Methods		151
Biography			167

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Table of Content

Table		Page
2.1	Equation and unknown associated with the method of slices	12
2.2	Various assumptions in method of slices and static equilibrium condition	13
2.3	Comparison of factors of safety for example problems (Fredlund and Krahn, 1977)	25
2.4	Comparison and characteristics of various slope stability analysis methods	
	(Cheng, 1997)	27
2.5	Comparison of the results of limit analysis and those of limit equilibrium analysis	
	(Jiang and Magnan, 1997)	29
2.6	Varnes classification system	35
4.1	Lists of testing for physical properties of soil	54
4.2	Lists of consolidated undrained triaxial compression test with pore pressure	
	measurement; $\overline{\text{CU}}$	55
4.3	Average values of soil properties	56
4.4	Effective shear strength parameter of soil	58
5.1	The average percentage of difference obtained by comparison between various	
	slope stability analysis methods and the measured data	73
5.2	Safety factor of landslides obtained by various slope stability analysis methods	
	and the percentage of difference from FS=1	86
5.3	Comparison of theory and application parts	88
A.1	The co-ordinate of the slope models (unit: cm.)	101
A.2	Sensors correction values (channel 000-019)	103
A.3	Experimental result of the slope model 1 (β =15.0 degrees)	113
A.4	Experimental result of the slope model 2 (β =17.5 degrees)	114
A.5	Experimental result of the slope model 3 (β =20.0 degrees)	115
C 1	Physical and engineering properties of soils of boring log no. BH1	132

Table		Page
C.2	Physical and engineering properties of soils of boring log no. BH2	133
C.3	Physical and engineering properties of soils of boring log no. BH3	134
C.4	Physical and engineering properties of soils of boring log no. BH4	135
C.5	Physical and engineering properties of soils of boring log no. BH5	136
C.6	Physical and engineering properties of soils of boring log no. BH6	138
C.7	The maximum deviator stress and the percentage of strain at the maximum	
	deviator stress	139
C.8	Values or value ranges for Poisson's ratio, μ	149
C.9	Value range for Modulus of elasticity, E for selected soil	150
D.1	Fellenius method – Model 1 ($\beta = 15.0^{\circ}$) - The results of the normal forces	
	and the percentage of difference	152
D.2	Fellenius method – Model 2 ($\beta = 17.5^{\circ}$) - The results of the normal forces	
	and the percentage of difference	153
D.3	Fellenius method – Model 3 ($\beta = 20.0^{\circ}$) - The results of the normal forces	
	and the percentage of difference	154
D.4	Simplified Janbu method – Model 1 ($\beta = 15.0^{\circ}$) - The results of	
	the normal forces and the percentage of difference	155
D.5	Simplified Janbu method – Model 2 ($\beta = 17.5^{\circ}$) - The results of	
	the normal forces and the percentage of difference	156
D.6	Simplified Janbu method – Model 3 ($\beta = 20.0^{\circ}$) - The results of	
	the normal forces and the percentage of difference	157
D.7	Spencer method – Model 1 ($\beta = 15.0^{\circ}$) - The results of the normal forces	
	and the percentage of difference	158
D.8	Spencer method – Model 2 ($\beta = 17.5^{\circ}$) - The results of the normal forces	
	and the percentage of difference	159
D.9	Spencer method – Model 3 ($\beta = 20.0^{\circ}$) - The results of the normal forces	
	and the percentage of difference	160
D.10	Slice Spring method – Model 1 ($\beta = 15.0^{\circ}$) - The results of the normal forces	
	and the percentage of difference	161

Table		Page
D.11	Slice Spring method – Model 2 ($\beta = 17.5^{\circ}$) - The results of the normal forces	
	and the percentage of difference	162
D.12	Slice Spring method – Model 3 ($\beta = 20.0^{\circ}$) - The results of the normal forces	
	and the percentage of difference	163
D.13	Rigid bodies-spring method – Model 1 ($\beta = 15.0^{\circ}$) - The results of	
	the normal forces and the percentage of difference	164
D.14	Rigid bodies-spring method – Model 2 ($\beta = 17.5^{\circ}$) - The results of	
	the normal forces and the percentage of difference	165
D.15	Rigid bodies-spring method – Model 3 ($\beta = 20.0^{\circ}$) - The results of	
	the normal forces and the percentage of difference	166

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure of Content

Figure		Page
2.1	Types of mass movements in soil slopes (Skempton and Hutchison, 1969)	5
2.2	Mode of slope failure	6
2.3	Mohr-Coulomb envelop:	
	(a) Soil element (b) Stress vector (c) Shear strength envelop	8
2.4	Various definitions of factor of safety	9
2.5	Shear stress and critical shear surfaces at limit equilibrium and at failure	10
2.6	Outline of method of slices	(1)
2.7	Simplified Bishop method of slices	15
2.8	Correction factor f_o as function of curvature ratio d/L and type of soil	16
2.9	Spencer method: (a) Cross-section through embankment,	
	(b) forces on typical slice and (c) force diagram	17
2.10	Converge procedure of Spencer's Method	18
2.11	Examples of functions described the variation of inter-slice force angles	19
2.12	Model of Slice-spring method	20
2.13	Slice displacement in the Slice-Spring Method	21
2.14	Definitions of terms used for Finite Element Method	22
2.15	Model of rigid bodies-spring method (RBSM)	23
2.16	Example problem (Fredlund and Krahn, 1977)	25
2.17	Comparison of factor of safety by plotting versus λ (Fredlund and Krahn, 1977)	26
2.18	All examples in the analysis (Jiang and Magnan, 1997)	28
2.19	Cross-section of model slope (Ritthisom et al., 2002)	32
2.20	The outline of the experimentation (Ritthisom et al., 2002)	32
2.21	Distribution of decomposed granite, andesite and basalt in Northern Thailand	34
2.22	Location and number of investigated landslides	35

Figure		Page
3.1	The composition of slope model	38
3.2	Graph of the normal forces in each slice of the slope model 1 (β =15.0 degrees)	41
3.3	Graph of the normal forces in each slice of the slope model 2 (β =17.5 degrees)	42
3.4	Graph of the normal forces in each slice of the slope model 3 (β =20.0 degrees)	43
3.5	Cross-section of public highway no.1093 at Km 35+400, Chiang Rai	46
3.6	Cross-section of failure slope on the left embankment of Mae Laeng Laung Dam,	
	Chiang Mai	48
3.7	Cross-section of failure slope in Bhuping Palace, Chiang Mai	49
3.8	Example of the shallow seated rotational slides failure slope in Mae Moh Mine,	
	Lampang	
4.1	The location of the failure slide in Doi Suthep, Chiang Mai and bore holes	
	to do soil sampling	53
4.2	Mohr's circle of sample A,B and C	57
4.3	The present ground surface and boring logs at Km. 13+855 of public highway	
	no.1004	60
4.4	The adjacent cross-section of the failure slope on public highway no.1004	61
4.5	Estimation of the failure surface and the sliding mass of the slope at Km. 13+855	
	of public highway no.1004	62
5.1	The graphs of the normal forces obtained by Fellenius method in each slice	66
5.2	The graphs of the normal forces obtained by Simplified Janbu method	
	in each slice	67
5.3	The graphs of the normal forces obtained by Spencer method in each slice	68
5.4	The graphs of the normal forces obtained by Slice spring method in each slice	69
5.5	The graphs of the normal forces obtained by Rigid bodies-spring method	
	in each slice	70
5.6	The relationship between the surface loading and the percentage of difference of	
	all methods for case (a): slope without the anchoring force	71
5.7	The relationship between the surface loading and the percentage of difference of	
	all methods for case (b): slope attached the anchoring force	72

Figure		Page
5.8	The graph of the average percentage of difference obtained by each method	74
5.9	The analysis of slope failure on public highway no. 1093 at km. 35+400, Payao	80
5.10	The analysis of slope failure at Mae Laeng Luang Dam, Chiangmai	81
5.11	The analysis of slope failure at Bhuping Palace, Chiangmai	82
5.12	The analysis of failure slope in Mae Mo Mine, Lampang	83
5.13	The analysis of failure slope in Doi Suthep, Chiangmai	84
5.14	Factor of safety obtained from each analysis methods	85
A.1	How to determine the shear strength parameter of the straw filled with sand	97
A.2	How to determine the friction angle between the straw filled with sand	
	and sand paper #400	98
A.3	How to determine the density of the straw filled with sand	99
A.4	The optimized shape of the slope models and model conditions	100
A.5	Cross-section and the detailed composition of the slope model	101
A.6	Sensors calibration	102
A.7	All sensors were installed under the plywood boards	104
A.8	The straws filled with sand were homogeneously piled up to be a slope	104
A.9	The weights were loaded on the upper side slice	105
A.10	Slope failure is occurred	105
A.11	The anchoring forces were installed in the case (b) model	106
A.12	Cross-section of the straw filled with sand	107
A.13	Checking the slope angle by handy angle measurement	107
A.14	The plywood boards covered with the sand paper #400 are separated	
	in each slice of the low Chiang Mai Univ	108
A.15	The sensors are attached under each slice to measure the normal forces	108
A.16	The slip plane of all 3 slope models	109
A.17	The optimized shape of all 3 slope models	110
A.18	Failure of the slope models at the maximum load	111
A 19	Setting 4 sensors to verify the anchoring forces	112

Figure		Page
A.20	Placing the anchoring force perpendicular to the slope	112
B.1	Soil profile of Boring log no. BH1 at Km. 35+400, Public highway no. 1093	117
B.2	Soil profile of Boring log no. BH2 at Km. 35+400, Public highway no. 1093	118
B.3	Soil profile of Boring log no. BH3 at Km. 35+400, Public highway no. 1093	119
B.4	Bore holes and profile of Public highway no.1093 at Km. 35+380.00 – 35+450.00	120
B.5	Sketch of failure slope at Km. 35+400 of Public highway no.1093	121
B.6	Location of the failure mountain slope in Bhuping Palace, Chiang Mai	122
B.7	Profile plan of the mountain slope in Bhuping Palace, Chiang Mai	123
B.8	Profile plan of the failure slope in Mae Mo Dam, Lampang	124
C.1	Soil profile of boring log no. BH1	126
C.2	Soil profile of boring log no. BH2	127
C.3	Soil profile of boring log no. BH3	128
C.4	Soil profile of boring log no. BH4	129
C.5	Soil profile of boring log no. BH5	130
C.6	Soil profile of boring log no. BH6	131
C.7	Deviator stress vs. strain relationship, and effective principle stress	
	Mohr's circle of sample A	140
C.8	Deviator stress vs. strain relationship, and effective principle stress	
	Mohr's circle of sample B	141
C.9	Deviator stress vs. strain relationship, and effective principle stress	
	Mohr's circle of sample C	142
C.10	Slope failure on the right way of public highway no. 1004 at Km. 13+855.00	145
C.11	The sliding mass is still on the failure slope	146
C.12	Disturbed soil sampling by hand auger	146
C.13	SPT and CPT in the field along the centerline of the slope	147
C.14	Undisturbed samples for triaxial test to obtain the shear strength parameter of soil	148

Symbols

b = width of slice

BH = bore hole

c = cohesion of soil

c' = effective cohesion of soil

c_' = mobilized effective cohesion of soil

CPT = Cone penetration test

CU = Consolidated Undrained Triaxial Compression with Pore Pressure Measurement

E = inter-slice normal force

 f_{θ} = correction factor (Simplified Janbu method)

f(x) = arbitrary function

F = factor of safety

F_f = factor of safety satisfied force equilibrium

F_m = factor of safety satisfied moment equilibrium

FS = factor of safety

FOS = factor of safety

h = average height of slice

H = vertical height of a slope

k = additive unknown value (Spencer method)

length of slice

M = moment

n = a number of vertical slices

N = normal force on the base

N' = effective normal force

N/A = not available

R = radius of rotation

RBSM = Rigid Bodies-spring Method

RI = reliability index

S = shear strength along the failure surface

SPT = Standard penetration test

T = shear force on the base

u = pore water pressure

Vi = relative vertical displacement (Slice spring method)

W = total weight of slice

X = inter-slice shear force

Z = inter-slice resultant force

 Z_{DVI} = the virtual shear forces along the inter-slice plane (Slice spring method)

 Z_{Hi} = horizontal inter-slice force (Slice spring method)

α = inclination of the base to the horizontal

 β = inclination angle of slope

 δ = inclination angle of inter-slice force

 δ_{Di} = the virtual inclination angle of the inter-slice force (Slice spring method)

 γ = total unit weight of soil

λ = addition unknown (Morgenstern and Price method)

 ϕ = friction angle of soil

 Φ' = effective friction angle of soil

 ϕ_{m} ' = mobilized effective friction angle of soil

ε = strain at the maximum deviator stress

σ = total normal stress on the failure surface

 σ' = effective normal stress on the failure surface

 $\sigma_{\rm D}$ = standard deviation of the factor of safety

 $\Delta \sigma_3$ = increment of cell pressure

 $\tau_{\rm f}$ = shear strength of the soil

 τ_{m} = shearing stress along failure surface

 θ = scaling factor (Spencer method)