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APPENDIX A

Parameter for the IEEE 14-Bus Test System

Table A.1 Line parameter at fundamental frequency comparing between data from
IEEE 14-bus and data modeling from TL program
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Table A.2 Line parameter at each harmonics frequency from TL program

H-Order 5 7 : 11
Bus#|Bus#| R(pw) | X(pu) | B (pw) | R(pw) | X (pu) [ B (pu) | R (pu) | X (pu) [ B (pu)
1 2 ] 0.01956]| 0.29143] 0.26958( 0.01983] 0.40292| 0.37977] 0.02016} 0.60971| 0.60823
1 5 _10.05136] 1.06127] 0.25369{ 0.04779] 1.41934| 0.36343] 0.03621| 1.93529] 0.61486
2 3 [ 0.04493{ 0.95956{ 0.22078] 0.04228] 1.29700] 0.31464] 0.03434| 1.82868| 0.52298
2 4 ]0.05768| 0.85907| 0.18691| 0.05666] 1.17119] 0.26518] 0.05202| 1.69706] 0.43436
2 |5 ]0.05536| 0.86715| 0.17320 0.05438] 1.18452] 0.24550] 0.05028] 1.72648] 0.40096
3 4 | 0.06464] 0.82982] 0.17575] 0.06202] 1.13413] 0.24904] 0.05400] 1.65621] 0.40627
4 5 10.01406] 0.20997] 0.06475} 0.01473] 0.29328] 0.09075] 0.01635] 0.45782{ 0.14308
4 7 1 0.00000} 1.04500{ 0.00000{ 0.00000] 1.46300] 0.00000] 6.00000| 2.29900/ 0.00000
4 5 10.00000| 2.78090| 0.00000( 0.00000] 3.89326{ 0.00006] 0.00000] 6.11798| 0.00000
5 6 | 0.00000| 1.25100| 0.00000{ 0.00000] 1.75140] 0.00000] 0.00000] 2.75220} 0.00000
6 | 11 ]0.09564| 0.98028| 0.09314] 0.09606] 1.35226[ 0.13137] 0.09543] 2.03169] 0.21120
6 | 12 ]0.12129] 1.24678] 0.12220] 0.11926] 1.70249] 0.17325] 0.11042} 2.47853[ 0.28315
6 | 13 10.06767) 0.64895} 0.06843] 0.06904] 0.90209] 0.09615] 0.07207| 1.38744| 0.15274
7 8 | 0.00000{ 0.88075] 0.00000{ 0.00000] 1.23305] 0.00000] 0.00000| 1.93765| 0.00000
7 9 | 0.00000{ 0.55000| 0.00000{ 0.00000] 0.77000] 0.0000¢| 0.00000| 1.21000| 0.00000
9 [ 10 ]0.03345| 0.41934] 0.03647[ 0.03489] 0.58564] 0.05112| 0.03844] 0.91355 0.08063
9 | 14 10.12502]| 1.31635] 0.12392 0.12245] 1.79420[ 0.17585] 0.11188] 2.59712 0.28827
10 | 11 |0.08385] 0.94628] 0.10660] 0.08504{ 1.30333] 0.15048] 0.08572| 1.94885] 0.24252
12 | 13 |0.21447] 0.98087[ 0.11484] 0.20844| 1.34837] 0.16226] 0.19016[ 2.00428| 0.26233
13 | 14 10.16083] 1.65591] 0.17677[ 0.14999] 2.20697| 0.25379] 0.11428| 2.97304] 0.43254

Table A.2 Line parameter at each harmonics frequency from TL program (Cont.)

H-COrder 13 17 19
Bus#|Bus#} R(pu) | X(pu) { B (pu) | R{pu) | X(pu) | B (pu) | R(pu) | X (pu) | B (pu)
1 2 | 0.02009] 0.70248| 0.72818] 0.01922] 0.86111] 0.98458| 0.01835] 0.92503| 1.12355
1 5 0.02842) 2.07073] 0.76674| 0.00995] 2.06759| 1.16963(-0.00008] 1.92933] 1.45925
2 3 0.02917{ 2.00476{ 0.64327 0.01690| 2.14751] 0.93946) 0.01009] 2.10931] 1.13172
2 4 10.04804| 1.89726 0.52846| 0.03629] 2.14652| 0.74716] 0.02858] 2.18918| 0.87883
2 3 10.04683] 1.93799| 0.48678| 0.03666| 2.21668| 0.68402] 0.02997] 2.27713| 0.80107
3 4 10.04870] 1.86177| 0.49281] 0.03591] 2.13805| 0.69084| 0.02864] 2.20233] 0.80773
4 5 _10.01720! 0.53868( 0.16946) 0.018380] 0.69673| 0.22282] 0.01950] 0.77358| 0.24985
4 7 1 0.00000( 2.71700| 0.00000] 0.00000] 3.55300] 0.00000] 0.00000] 3.97100| 0.00000
4 9 [ 0.00000| 7.23034| 0.00000( 0.00000| 9.45506] 0.00000] 0.00000| 10.56742| 0.00000
5 6 | 0.00000} 3.25260} 0.00000| 0.00000{ 4.25340| 0.00000] 0.00000] 4.75380! 0.00000
6 11 ] 0.09374] 2.32921{ 0.25353] 0.08642] 2.81811| 0.34527| 0.08053] 3.00234] 039585
6 12 | 0.10281] 2.77984| 0.34393 0.08013] 3.17223] 0.48396| 0.06512] 3.25367| 0.56733
6 13 | 0.07334] 1.61621| 0.18183| 0.07458] 2.03784| 0.24225| 0.07432] 2.22772| 027386
7 8 10.00000( 2.28995] 0.00000| 0.00000] 2.99455] 0.00000} 0.00000] 3.34685| 0.00000
7 9 1 0.00000{ 1.43000{ 0.00000| 0.00000| 1.87000( 0.00000] 0.00000] 2.09000] 0.00000
9 10 1 0.,04030) 1.07436] 0.09553| 0.04371] 1.38773] 0.12570( 0.04515] 1.53952] 0.14102
9 | 14 [0.10307] 2.90107 0.35092] 0.07743] 3.27420] 0.49695] 0.06077 3.33355]| 0.58519
10 11 | 0.08438| 2.22688| 0.29164| 0.07704{ 2.67109] 0.39906| 0.07087] 2.83008( 0.45896
12 | 13 ]0.17787] 2.28085] 0.31614] 0.14711] 2.70639] 0.43518] 0.12877 2.84767] 0.50249
13 14 10.08915) 3.15160] 0.54256| 0.02698| 3.C5760| 0.84371(-0.00764] 2.78947| 1.06968
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Table A.2 Line parameter at each harmonics frequency from TL program (Cont.)

H-Order 23 25

Bus#|Bus#| R{(pu) | X(pu) | B (pu) | R{pu) | X{pw) | B (pu)

2 0.01570| 1.01819| 1.43121| 0.01394| 1.04629| 1.60431

-0.01964| 1.40990| 2.48061| -0.02826] 1.05161] 3.56582

-0.00402] 1.82030] 1.68913| -0.01089| 1.57938| 2.13303

0.01026] 2.10519] 1.21714| 0.00014| 1.98074| 1.44607

0.01392] 2,23298] 1.09527| 0.00494| 2.12945| 1.28877

0.01299] 2.17577| 1.09920] 0.00490| 2.08559| 1.28903

0.02064] 0.92211| 0.30481] 0.02107| 0.99346| 0.33280

0.00000] 4.80700| 0.00000| 0.00000] 5.22500| 0.00000

0.00000] 12.79214| 0(.00000| 0.00000| 13.90450| 0.00000

Mol S|l

0.00000] 5.75460| 0.00000| 0.00000| 6.25500| 0.00000
0.06425] 3.23690] 0.51039| 0.05404| 3.28378| 0.57659
0.02914; 3.17709{ 0.77790] 0.00907| 3.02093| 0.91722
0.07168! 2.55886] 0.34070) 0.06927) 2.69778| 0.37633
0.00000! 4.05145| 0.00000{ 0.00000| 4.40375| 0.00000
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dence matrix (Cyz)

*

mci

Table A.3 Node-line

Line#
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Table A.4 Line-branch incidence matrix (Cyz)
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Table A.5 Non-zero elements of primitive admittance mairix (¥pp) for the 5™ harmonic

68

Branch ii ¥3; (ii,ii) Branch ii Yag (ii,ii)

Real | Imag Real | Imag
1 0.2292| -3.4160, 19 0.3175| -4.7414
2 0.1348| 0.0000{ 20 0.0324] 0.0000
3 0.1348| 0.0000] 21 0.0324| 0.0000
4 0.0455| -0.9401| 22 0.0986| -1.0105
5 0.1268{ 0.0000] 23 0.0773| ~0.7945
6 0.1268; 0.0000| 24 0.1589| -1.5244
7 0.04871 -1.0399] 25 0.1890] -2.3697
3 0.1104| 0.0000{ 26 0.0715| -0.7529
9 0.1104| 0.0000] 27 0.0929| -1.0485
10 0.0778] -1.1588} 28 0.2128| -0.9730
11 0.0935| 0.0000, 29 0.0581| -0.5983
12 0.0935| 0.0000, 30 0.0000| -0.9569
13 0.0733] -1.1485| 31 0.0000{ -1.8182
14 | 0.0866| 0.0000 32 0.0000} -1.1354
15 0.0866| 0.0000{ 33 0.0000} -0.3596
16 0.0933| -1.1978] 34 0.0000{ -0.7994
17 0.0879] 0.0000] 35 0.0000; 0.3165
18 0.0879| 0.0000
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Table A.6 Node-node admittance matrix (¥wwn) for the 5™ harmonic

Bus#j 1 2 3 4 5 6 7 8 9 10 11 12 } 13 14
l 0.536|-0.229( 0.000| 0.000{-0.045[ 0.000] 0.000] 0.000] 0.000] 0.006[ 0.000] 0.000[ 0.000 0.000
-3.156} 3.416/ 0.000] 0.000] 0.9401 0.000| 0.000| 0.000{ 0.000{ 0.000| 0.000! 0.000| 0.000! 0.000
2 1-0.229( 0.854|-C.049(-0.078(-0.073| 0.000| ©.000} 0.000| 0.000| 0.000] 0.000] 0.000] 0.000 0.000
3.416{-7.563f 1.040| 1.159| 1.149} 0.000{ 0.000| 0.000{ 0.000} 0.000| 0.000] 0.000| 0.000| 0.000
3 0.000|-0.049( 0.340[-0.093{ 0.060[ 0.000] 0.000{ 0.000] 0.000] 0.000| 0.0001 0.000| 0.000| 0.000
0.000( 1.040(-2.238( 1.198| 0.000| 0.000} 0.000{ 0.000{ 0.000| 0.000] 0.000| 0.000] 0.000! 0.000
4 | 0.000(-0.0781-0.093| 0.702}-0.318] 0.000| 0.000] 0.000] 0.000| 0.000] 0.000] 0.000] 0.000| 0.000
0.000] 1.159| 1.198|-8.415| 4.741{ 0.000| 0.957| 0.000 0.360{ 0.000| 0.000{ 0.000| 0.000| 9.000
5 |-0.045[-0.073| 0.000(-0.318| 0.682] 0.000{ 0.000} 0.000| 0.000| 0.000! 0.000] 0.000{ 0.000| 0.000
0.940] 1.149( 0.000; 4.741{-7.629( 0.799| 0.000| 0.000| 0.000| 0.000( 0.000| 0.000| 0.000| 0.000
6 [ 0.000{ 0.000( 0.000( 0.000| 0.000| 0.335] 0.000] 0.000] 0.000] 0.000]-0.095]-0.077|-0.159| 0.000
0.000; 0.000; 0.000] 0.000| 0.799]-4.129] 0.000| 0.000| 0.000{ 0.000{ 1.010| 0.795| 1.524| 0.000
7 { 0.000[ 0.000| 0.000{ 0.000{ 0.000| 0.000| 0.000] 0.000] 0.000[ 0.000] 0.000| 0.000] 0.000] 0.000
0.000} 0.000f 0.000| 0.957( 0.000| 0.000{-3.911} 1.135} 1.818| 0.000| 0.000] 0.000| 0.000| 0.000
8 | 0.000| 0.000 0.000] 0.000f 0.000; 0.000{ 0.000[ 0.000] 0.000| 0.000| 0.000] 0.000| 0.000| 0.000
0.000{ 0.000| 0.000] 0.000{ 0.000( 0.000| 1.135(-1.135| 0.000] 0.000] 0.000| 0.000| 0.000] 0.000
9 0.000{ 0.000{ 0.000( 0.000| 0.000| 0.000| 0.000] 0.000] 0.261|-0.189] 0.000] 0.000] 0.000|-0.072
0.000| 0.000| 0.000| 0.360| 0.000( 0.000] 1.818] 0.000|-1.984{ 2.370| 0.000| 0.000] 0.000| 0.753
10 | 0.000| 0.000f 0.000] 0.000| 0.000| 0.000} 0.000] 0.000{-0.189] 0.282[-0.093] 0.000[ 0.000] ©.000
0.000] 0.000| 0.000{ 0.000} 0.000| 0.000| 0.000] 0.000| 2.370}-3.418| 1.049| 0.000| 0.000| 0.000
11 ] 0.000; 0.000; 0.000] 0.000( 0.000(-0.099| 0.000| 0.600} 0.000}-0.093] 6.192] 0.000| 0,000 0.000
0.000| 0.000{ 0.000] 0.000]| 0.000| 1.010| 0.000 0.000f 0.000| 1.049}-2.059) 0.000j 0.000{ 0.000
12 .| 0.000( 0.000( 0.000] 0.000( 0.000{-0.077| ©.000| 0.000[ 0.000] 0.000] 0.000| 0.290{-0.213] 0.000
0.000| 0.000| 0.000] 0.000| 0.000| 0.795] 0.000! 0.000| ¢.000| 0.000] 0.000(-1.768| 0.973! 0.000
13 | 0.000{ 0.000| 0.000( 0.000] 0.000{-0.159] 0.000} 0.000] 0.000] 0.000[ 0.000[-0.213[ 0.430[-0.058
0.000] 0.000| 0.000; 0.000( 0.000] 1.524| ©.000| 06.600[ 0.000| 0.000| 0.000| 0.973(-3.096] 0.598
14 | 0.000f 0.000} 0.000| 0.000]| 0.000} 0.000| ©.000{ 0.000}-0.072] 0.000] 0.000[ 0.000[-0.058| 0.130
.0.000| 0.000] 0.000{ 0.000] 0.000] 0.000} 0.000| 0.000] 0.753| 0.000| 0.000{ 0.000| 0.598].1.351
Note:
Bus# 1
1 Real part| 0.536
Imaginary part| -5.156
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Table A.7 Line-node admittance matrix (¥;x) for the 5" harmonic

Bus#

Line#

7

10

11

12

13

14

i

0.364

-0.229

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-3.416

3.416

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.229

0.094

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.060

0.000

0.000

0.000

0.000

3.416

-3.416

0.000

0.000

0.000

0.000

0.000

0.000

£.000

0.000

0.000

0.000

0.000

0.000

0.172

0.000

0.000

0.000

-0.045

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.940

0.000

0.000

0.000

0.940

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.045

0.000

0.000

0.000

-0.081

0.000

0.000

0.000

0.000

0.060

0.000

0.000

0.000

0.000

0.940

0.000

0.000

0.000

-0.940

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.159

-0.049

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0,000

0.000

0.000

0.000

-1.040

1.040

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.049

-0.062

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1,040

-1.040

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.171

0.000

-0.078

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-1.159

0.000

1.159

0.000

0,000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.078

0.000

-0.016

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1.159

0.000

-1.159

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.160

0.000

0.060

-0.073

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-1.149

0.000

0.000

1.149

0.000

0.000

0.000

-0.000

0.000

0.000

0.000

0.000

0.000

0.060

-0.073

0.000

0.000

-0.013

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1.149

0.000

0.000

-1.149

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.093

0.181

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1.198

-1.198

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.005

-0.093

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-1.198

1,198

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.350

-0.318

0.000

0.000

0,000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-4,741

4.741

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.006

0.000

0.000

0.000

0.000

-0.318

0.285

0.000

0.000

0.600

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

4.741

-4.741

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.099

0.000

0.000

0.000

0.000

-0.099

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-1.010

0.000

0.000

0.000

0.000

1.010

0.000

0.000

0.000

16

0.000

0.000

0.000

0.000

0.000

-0.099

0.000

0.000

0.000

0.000

0.099

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

1.01¢

0.000

0.000

0.000

0.000

-1.010

0.000

0.000

0.000

17

0.000

0.000

0.000

0.000

0.000

0.077

0.000

0.000

0.000

0.000

0.000

-0.077

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-0.795

0.000

0.000

0.000

0.000

0.000

0.795

0.000

0.000

18

0.000

0.000

0.000

0.000

0.000

-0.077

0.000

0.000

0.000

0.000

0.000

0.077

0.000

0.000

0,000

0.000

0.000

0.000

0.0600

0.795

0.000

0.000

0.000

0.000

0.000

-0.795

0.000

0.000

19

0.000

0.000

0.000

0.000

0.000

0.159

0.000

0.000

0.000

0.000

0.000

0.000

-0.159

0.000

0.000

0.000

0.000

0.000

0.000

-1.524

0.000

0.000

0,000

0.000

0.000

0.000

1.524

0.000

20

0.000

0.000

0.000

0.000

0.000

-0.159

0.000

0.000

0.000

0.000

0.000

0.000

0.159

0.000

0.000

0.000

0.000

0.000

0.000

1.524

0.000

0.000

0.000

0.000

0.000

0.000

-1.524

0.000

21

0.000

0.000

0.000

0.000

0.0600

0.000

0.000

0.000

0.189

-0.189

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

-2.370

2.370

0.000

0.000

0.000

0.000
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Table A.7 Line-node admittance matrix (¥,) for the 5th harmonic (Cont.)

‘ Bus# :
Line# 1 2 3 4 5 G 7 8 9 10 11 12 13 14
22 0.000( 0.000; 0.000] 0.000{ 0.000} 0.000] 0.000[ 0.000]-0.189 0.189] 0.000] 0.000{ 0.000( 0.000
0.000| 0.000| 0.000] 0.000] 0.000] 0.000 0.000] c.000[ 2.370 «2,.370| 0.000] 0.006] 0.000] 0.000
23 0.000] 0.000) 0.000] 0.000{ ©¢.000| 0.000] 0.000] 0.000] ¢.072] 0.000 0.000| 0.000| 0.000!-0.072
0.000] 0.000] 0.000| 0.000| 0.600] 0.0n0{ 0.000[ 0.0001-0.753] ¢.000] 0.000 0.000] 0.0001 0.7353
24 0.000] 0.000]| 0.000| 0.000( 0.000] 0.000] 0.000] 0.000!-0072 0.000j 0.000] 0.000{ 0.000{ 0.072
0.000; 0.000| 0.000[ 0.000] 0.000| 0.000] 0.000] 0.000f 0.753] 0.000 0.000{ 0.000] 0.000|-0.753
25 0.000{ 0.000| 0.000| 0.000] 0.000[ 0.000] 0.000] 0.000] 0.000] 0.093]-0.093| 0.000 0.000] 0.000
0.000] 0.000| 0.000{ 0.000{ 0.000] 0.000] 0.000| 0.000] 0.000(-1.04%] 1.049 0.000{ 0.000| 0.000
26 0.000{ 0.000| 0.000] 0.000] 0.000] 0.060] 0.000] 0.000] 0.000/-0.093| 0.093 0.000| 0.000] 0.000
0.000] 0.000| 0.000| 0.000[ 0.000[ 0.000] 0.000{ 0.000] 0.000| 1.049[-1.049] 0.000 0.000] 0.000
27 0.000] 0.000{ 0.000) 0.000] 0.000{ 0.000] 0.000] 0.000] 0.000{ 0.000] 0.000] 0.213]-0.213 0.000
0.000{ 0.000] 0.000} 0.000] 0.000( ©.000] 0.0600] 0.000] ¢.000] 0.000] 0.000]-0.973 0.9731 0.000
28 0.000] 0.000[ 0.000 0.000( 0.000| 0.000] 0.000| 0.000] 0.000] 0.000] 0.000{-0.213] 0.213] 0.000
0.000] 0.000] 0.000| 0.000( 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.000] 0.973]-0.973] 6.000
29 0.000{ 0.000| 0.000| 0.000| 0.000] 0.000] 0.000} 0.000] ¢.000] 0.000] 0.000] 0.000[-0.058] 0.058
0.000{ 0.000] 0.000| 0.000{ 0.000] 0.000! 0.000] 06.000] 0.000] 0.000] 0.000| 0.000| 0.598]-0.598
30 0.000{ 0.000| 0.000{ 0.000| 0.000] 0.000] 0.000| 0.00c| 0.000] 0.000] 0.000] 0.000| 0.0581-0.058
0.000] 0.000| 0.000{ 0.000{ 0.000] 0.0007 0.000( 0.000] 0.000] 0.000[ 0.000] ¢.006]-0.598] 0.598
21 0.000( 0.0001 0.000] 0.000| 0.000]| 0.000| 0.000| 0.000| 0.000} 0.000| 0.000] 0.000] 0.000] 0.000
0.000{ 0.000; 0.000]-0.957| 0.000] 0.000] 0.957| 0.000| 0.000] 0.000] 0.000] 0.00¢] 0.000| 0.000
32 0.000] 0.000| 0.000( 0.000| 0.000] 0.000| 0.000| 0.000] 0.000} 0.000] 0.000] 0.006] 0.000] 0.000
0.000{ 0.000| 0.000| 0.957| 0.000] 0.000| -0.937] 0.000] 0.000} 0.000| 0.000] 0.000| 0.000] 0.000
33 0.000{ 0.000] 0.000| 0.000] 0.000! 0,000| 0.000| 0.000| 0.000| 0.000] 0.000] 0.000] 0.00¢| 0.000
0.000] 0.000] 0.000] 0.000] 0.000] 0.000] -1.818| 0.000] 1.81% 0.000] 0.000| 0.000] 0.000] 6.000
34 0.000] 0.000| 0.000| ¢.000] 0.000} 0.000] 0.000 0.000] 0.000] 0.000| 0.000| 0.000| 0.000| 0.000
0.000] 0.000| 0.000] 0.000; 0.000[ 0.000] 1.8:8] 0.000]-1.818] 0.000] 0.000] 0.000| 0.000[ 0.000
35 0.000; 0.000] 0.000| 0.000! 0.000{ 0.000; 0.000| 0.000] 0.000| 0.000] 0.000| 0.000] 0.000| 0.000
0.0001 0.060] 0.000] 0.000] 0.000} 0.000§ -1.135| 1.135| 0.000} 0.000] 0.000| 0.000] 0.000[ 0.000
36 0.000} 0.000} 0.000| 0.000] 0.000] 0.000} €.000] 0.000( 0.000] 0.000| 0.000| 0.000| 0.000| ©.000
0.000; 0.000[ 0.000} 0.000( 0.000] 0.000] 1.135]-1.135| 0.000! 0.000] 0.000| 0.000( 0.000[ 0.000
37 0.000; 0.000( 0,000 0.000( 0.000( 0.000] 0.000; 0.000| 0.000| 0.008| 0.000| 0.000] 0.000| 0.000
0.000] 0.000( 0.000[-0.360| 0.000] 0.000] 0.000] 0.000] 0.360| 0.000{ 0.000| 0.000] 0.000{ 0.000
38 0.000| 0.000 0.000} 0.000| 0.000{ 0.000{ 0.000{ 0.000] 0.000] 0.000| 0.000] 0.000] 0.000| 0.000
0.000| 0.000( 0.000] 0.360| 0.000( 0.000] ©.000] 0.000]-0.360] 0.000] 0.000] 0.000] ¢.000( 0.000
39 0.000( 0.000| 0.000| 0.000| ¢.000! 0.000} ©0.000] 0.000] 0.00¢| 0.000] 0.000] 0.000] 0.000] 0.000
0.000] 0.000( 0.000| 0.000/-0.799| 0.799} 0.000| 0.000] 0.000] 0.600! 0.000] 0.000] 0.000| 0.000
40 0.000] 0.000( 0.000| 0.000| 0.000[ 0.c03] 0.600| 0.000] 0.020] 0.000] 0.000] 0.000| 0.058|-0.058
0.000] 0.000] 0.000| 0.0600| 0.799]-0.799 0.000| 0.000] 0.000] ¢.000] 0.000| 0.000{ 0.000[ 0.000
41 0.0001 0.000] 0.000{ 0.000] 0.000| €.000( 0.000( 0.000} 0.00¢{ 0.000] 0.000] 0.000{ 0.000[ 0.000] -
0.000] 0.000{ 0.000| 0.000{ 0.000] 0.000| 0.000( 0,000} 0.317( 0.000] 0.000| 0.000{ 0.000]| 0.000
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Table A.8 Harmonic source spectra
H-order Six-Pulse HVDC Delta Conn ected TCR
Mag(pu) | Angle(deg) | Mag(pw) | Angle(deg)
1 - 1.0000 -49.56 1.0000 46.92
S 0.1941 -67.77 0.0702 -124.40
7 0.1309 11.90 0.0250 -29.87
11 0.0758 -7.13 0.0136 -23.75
13 0.0586 68.57 0.0075 71.50
17 0.0379 46.53 0.0062 77.12
19 0.0329 116.46 0.0032 173.43
23 0.0226 87.47 0.0043 178.02
25 0.0241 159.32 0.0013 -83.45
29 0.0193 126.79 0.0040 -80.45

Table A.9 The physical geometry of the IEEE 14-bus test system using TL program

Bus#|Bus#| A B

CIDI'EJF|G|H|I1|JIi{K[L]M]|NJolpP
1 42 |s200 2t a4 [ ot fusolat |1 ] 1 [300] 0 [300]35][ 300 |7.00]200[12.00
1 [ 5 j931f15] 4 toaasfusol 31| v | 1 Jioo] o [il.00] s | 100 |16.00]3.00[18.00
2 | 3 18500 |15 ] 4 joasfiso] 3|1 |1 [1eo]l 0o [ 0 | o [-11o0| 0 [1.00(500
2 | 4 [7540 | 92| 2 [oaso|so 3] 1 T 1 Jaoo| o [700] 6 | 200 [12.00[2.00 [16.0
2 | 5 (728214 2 [oasof1sofl 3 [ 1 ] 1 Jseo] 0 [ o | o [s00| 0| 0 |so0
3 | 4 |6946 ;11| 2 [oaoo]1sof 31 1 | 1 |s00] o [800[700] 500 [14.00]2.00]18.00
4 1 s |25 {18 2 forooltsof 31 ] 1 | 1 [s.00] o [500[500]s5..00[10.00]200]15.00
6 | 11 [sesofl21 [t [ o Juze]l o] 1 [ofss3fo o] o |58]0]-1-
6 [ 12 |7as 21| 1 | o fiz0] o] 1 o {ssolo|o0o]o]|-=ss0]0]-
6 | 133321 o fno]lol v folaslolo[olasma|o]-1-
9 | 1o f220a 20 [ 1 [ o]nze]o {1 [9o{83] 0| 0] 08130
9 fjmsml2ar [ 1t {ofize]lo |1 [ o fessfo|[0] o0 -6a8|0]-
10 11l fs920f{20] 1 [ ofuzoof 1 |9 {340 ]0o][oi34]0]-
12 [ 13 16260 [26 | 1 J o J1z0fl o1 [o{1s8) o0 o0 |-18]0]|-]-
13 | 14 Jro206f21 ] 1 o |12z0f 01 |9 a0 oo o [4e]|o]|-]-

Note: A: Length of line (km)

B: Conductor type (Table A.10)

C: Number of conductor in bundle

D: Bundle spacing (m)

E: Average height of lowest conductor above the ground
F: Earth wire type (0: no earth wire) (Table A.10)

G: Circuit type (1: single circuit, 2: double circuit)

H: Number of earth wire (I or 2, 9: line has earth wire only at the ends)
I: Phase 1 horizontal distance from the tower axis (m)

J: Phase 1 vertical distance from the average height (m)
K: Phase 2 horizontal distance from the tower axis (m)
L: Phase 2 vertical distance from the average height (m)
M: Phase 3 horizontal distance from the tower axis (m)
N: Phase 3 vertical distance from the average height (m)



Table A.10 Conductor types
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' Diameter Ge&'::;r 11 Resistance .Inside
Type Conductor description Brand name (cm) Radius |  PF km | diameter
(cm) {(at 20 °C) (cm)
1 |84/3.70 + 19/2.22 ACSR CHUKAR 40.69 16.34 0.03134 11.10
2 |54/4.36 + 19/2.62 ACSR SPECIAL 39.24 15.76 0.03819 13.10
3 |76/3.72 + 7/2.89 ACSR SPECIAL 38.40 15.39 0.03511 8.76
4 |54/3.90 +19/2,34 ACSR PHEASANT | 35.10 14.20 0.04491 11.70
5 [54/3.18 + 7/3.15 ACSR ZEBRA. 28.58 11.55 0.07009 9.54
6 |30/3.71 + 7/3.71 ACSR GOAT 25.96 10.70 0.09010 11.13
7 130/3.00 + 7/3.00 ACSR PANTHER 20.98 8.76 0.13790 9.06
8 {30/2.59+ 7/2.59 ACSR WOLF 18.14 7.47 0.18450 71.77
9 |26/2.57+ 7/2.00 ACSR PARTRIDGE | 16.31 6.61 0.21320 6.00
10 126/2.54 + 7/1.91 ACSR COYOTE 15.88 6.40 0.22120 5.73
11 116/2.86 + 19/2.48 ACSR BRAHMA 18.14 3.17 0.29170 12.40
12 [7/4.39 + 7/1.93 ACSR HYENA 14.58 248 0.30700 5.79
13 16/4.72 + 1/4.72 ACSR HARE 14.17 244 0.30800 4.72
14 16/4.72 + 7/1.57 ACSR DOG 14.17 244 (.30570 4.71
15 |6/4.25 + 1/4.25 ACSR PIGEON 12.75 1.83 0.33800 4.25
16_]12/2.59 + 7/2.59 ACSR SKUNK 12.95 1.83 0.45690 7.77
17 16/3.66 + 1/3.66 ACSR MINK 10.97 1.49 0.47290 3.66
18 119/2.57 COPPER COPPER 12.83 4.85 0.18400
19 {37/1.83 COPPER COPPER 12.80 4.91 0.18390
20 [7/4.22 COPPER COPPER 12,65 4.57 0.18310
21 119/2.34 COPPER COPPER 11.68 4.42 0.22190
22 |7/3.45 COPPER COPPER 10.36 3.75 0.27260
23 17/3.25 COPPER COPPER. 9,75 3.54 0.29950
24 17/2.77 COPPER COPPER - 8.31 2.99 0.43020
23 [19/1.63 COPPER COPPER. 8.13 3.08 0.45850
26 {7/2.64 COPPER COPPER 7.92 2.87 0.46630
27 |7/2.34 COPPER COPPER 7.01 2.53 0.60100
28 |7/2.03 COPPER COPPER 6.10 2.23 0.79470
29 {7/3.71 GEHSS GEHSS 11.13 | 3.00E-06 | 3.50000
30 17/3.68 GEHSS GEHSS 11.05 | 3.00E-06 | 3.50000
3i [7/3.18 GEHSS GEHSS 9.52 [ 3.00E-06 | 4.00000
32 17/3.05 GEHSS GEHSS 9.14 | 3.00E-06 | 5.00000
33 [7/2.64 GEHSS GEHSS 7.92 | 3.00E-06 | 8.00000
34 17/2.59 GEHSS GEHSS 7.77 | 3.00E-06 | 8.50000
35 [7/3.711 ALUMOWELD AL/WELD 11.13 0.72 4.00000
36 17/3.05 ALUMOWELD AL/WELD 9.14 0.59 5.50000
37 119/2.87 GEHSS GEHSS 14.35 | 3.00E-06 | 6.00000
38 137/3.66 COPPER COPPER 25.60 9,83 0.04600
39 161/2.62 COPPER COPPER 23.55 9.09 0.05450
40 137/2.62 COPPER COPPER 18.31 7.03 0.09000
41 |7/4.62 COPPERWELD CU/WELD 13.87 0.20 0.37830
42 17/4.72 H.D. ALUMINIUM WEKE 14,16 5.14 0.23280
43 119/4.22 H.D. ALUMINIUM COCKROACH| 21.10 7.99 0.10830
44 [72/4.41 + 7/2.94 ACSR KIWI 44.07 17.37 0.02956
45 16/3.35+1/3.35 ACSR RABBIT 10.06 1.37 0.54040
46 _16/3.00 + 1/3.00 ACSR ROBIN 9.02 0.67400




APPENDIX B
Three Phase Transmission Line Parameters (TL) Program [30]

B.1 Infroduction

This program may be used to calculate the following electrical characteristics
of a three phase transmission line, at arbitrary frequency: series impedance and shunt
admittance matrices in actual phase quantities, and series impedance and shunt
admittance matrices in sequence component.

From the lines geometry, conductor type and the earth resistively. Up to four
mutually coupled three phase lines maybe handled with up to four earth wires. All
circuits and earth wires may be of different types and need have no special symmetry.
The program was written to provide transmission line parameters for the three phase -
power flow analysis at arbitrary frequencies

The program calculates the unbalanced three phase parameters, including
mutual coupling terms between double circuit lines and electrically coupled single
circuit lines, and outputs a full record of the input data and the parameters, in both
sequence components and the phase components.

B.2 Details of the model

This program which is based primarily on the method outlined in Dommel,
uses Carson’s equations and correction factors to calculate the series impedance (2)
and shunt admittance (¥) matrices. To explain the method, the example of a single
circuit line with twin bundle conductors and two ground wires, as shown in Figure
B.1 will be used. Conductors 1, 2 are bundled into phase A, no. 3, 4 into phase B, 5, 6
into phase C and the earth wires conductors 7, 8.
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Figure B.1 Example of tower for TL program.

B.2.1 Series impedance

The series impedance of the 8 conductors are described in the form of an
8x8 impedance matrix Z. Its diagonal element Z; is the series impedance per unit
length of conductor i with ground serving as the return pate, and its off-diagonal
element Z is the series mutual impedance per unit length between conductor i and 7.
The matrix is symmetric, Zy = Zy. The values of the matrix elements are computed
with Carson’s formula, '

Z,.,.=(R,.+AR,,.)+j{2a>><10‘4xln[ih’-—J-i-AXﬁJ Q/km (B.1)
GMR,
Z,=Z,=0R, + j(ZcoxlO"‘ xln[%)hﬁX”‘) Q/km (B.2)
ik
with
R; is resistance of conductor i in Q/km,
h; is average height above ground of conductor /,
Dj is distance between conductor / and the image of conductor & (m) as shown in
Figure B.2,
dy is distance between conductor i and k£ (m),
GMR; is Geometric Mean Radius of conductor 7 (m),
@ is angular frequency
AR, AX is Carson’s correction terms which account for ground return effects.
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Figure B.2 Image of conductor for TL program.

The steady state voltage drop per unit length along the 8 conductors can then
be written as

] [z, - z.|[4
A=l v Zyy | (B.3)
VB Zs.l Zsa ]s

B.2.2 Shunt capacitance

The capacitance between the 8 conductors and ground are described in
the form of 8x8 capacitance matrix C. Its diagonal elements Cy is the sum of the
capacitance per unit length from conductor 7 fo all other conductors as well as to
ground; its off-diagonal element Cj, is the negative value of the shunt capacitance per
unit length between conductor i and % Again, C is symmetric, Cy=Cy. The
capacitance matrix cannot be computed directly. Instead, the matrix P of Maxwell’s
potential coefficients is formed, and C is then found by matrix inversion,

C =P (B.4)

The elements of P are computed from the tower geometry. If r << h, with r
being the radius of the conductor, then

E,:lelO“xIn[&] kim/F (B.5a)
]
6 ka
P, =P, =18x10 xln[—] km/F (B.5b)
ik

where r; is external radius of conductor 7.

The exact value of the factor in equation (B.5) is 2¢®x10™, with ¢ being the
velocity of light in air in km/s. Maxwell’s potential coefficients relate line-to-ground
voltages of the 8 conductors to the charges on the conductors,



=l By o (B.6)

B.2.3 Elimination of bundling and ground wires

The reduction process is simple for connection conductors into a bundle.
For a two conductor bundle the geometric mean distance (GMD), of the 2,3 or 4
conductors in the bundle reduces the bundle to a single equivalent conductor,

GMD=JGMRxd o2 o
Similarly for three conductors

: y d
GMD =YGMR x d* d

Similarly for four conductors
d

d
GMD =4GMR xd° d

For the series impedance matrix the radius R is replaced by the geometric
mean radius of effective geometric mean distance as it is sometimes called and similar
equivalent conductor relationships are used. |

Equation (B.3) and (B.6) for all 5 conductors are too detailed if the phase
quantities are required, as they are for power flow or harmonic studies.

They can be reduced to an equation per phase per circuit for a total of three.
The reduction process is easier to explain if the inverse forms of equation (B.3) and
(B.6) are used, rather than their original forms. Computation is faster, however of the
reduction process is applied to the original form. Assume that the inverse relationship
of equation (B.6) has been found by inverting P.

Ql C‘l,l - C'l S5 Vl

wl=l o Gy o || (B.7)
QS CS.I " CS.S VS

Since the voltage on the ground wires is zero (assuming that they are not
insulated from the towers), one can set ¥,=0 and ¥s=0 in equation (B.7), and omit the
rows for Oy and Qs. This means that wires 7 and 8 are eliminated by simply
scratching the last two rows and columns in equation (B.7). Their effect on the line
performance is contained, however, in the first 3 equations of equation (B.7).
The 8x8 matrix has been replaced by a 3x3 matrix with one row and column per
phase as required by power flow and harmonic studies.

Similar, equation (B.3) can be reduced to



Qa Ca W Ca,b Ca r Va

Q, |= Cb,a Cb,b Cb,c Y (B.8)
Qc a _Cc,a Cc b Cc,c' i _Vc .

Va_ -Za,a Za,b Za,a- -Icﬂ

Vil= 1 Zoa Zoop Zoe || 4o (B.9)
Vc Zc,a Zc,b Zc.c Ic

The reduction process for the impedance works the save way as for Cif Z'' is
worked with rather than Z.

B.2.4 Equivalent I circuits

For steady state solutions, an M-phase line can be represented by and

equivalent M-phase IT circuit, which exactly describes the conditions at the line
terminals for specific frequency and length.

The equivalent M-phase IT circuit is a generalization of the well known single
phase equivalent IT circuit in Figure B.3 (sometimes called the lone line

representation), where the series impedance Z.s and the shunt admittance Yo, is
calculated from

Z . = \/% x sinh(INZY ) (B.10)

; tanh [%\/ZY )
=Y, = B.11
3 Shunt E_ ( )
Y

Z is series impedance per unit length

Y is shunt admittance per unit length

! is length of line

1 zserics u
%Y:hum %}thf

Figure B.3 The single phase IT equivalent circuit for TL program.



APPENDIX C
M-File of Proposed Measurement Placement Algorithm

C3.1 Placement.m (Proposed Measurement Placement Algorithm)
%Proposed measurement placement method
%Using minimum condition number analysis

%Base on sequential elimination
%% ===

echo off

clear all

cle

close all

sum_bus=14; %This system, IEEE 14-bus test system, has 14 busbars.
sum_node=14; %This system has 14 nodes.

sum_line=41; %This system has 41 lines.

sum_kranch=35; %This system has 35 branch.

sum_ctate_variable=10; %This system has 10 state variables.

H=[];

%$Step 1: Form H (Using flowchart in Figure 2.6)

[1 74
LAY

0/
load H05; %Load matrix H from this file.
Y _new=h;

%%Placement from passible location
%%
%Case I; Possible location = 2N+L

Node number =[12345678910111213 147},

IN_meas_position=[11111111% 1 11 11]; %]l ismeasured, 0 is unmeasured.

VN, _meas_position=[1 11111111 11111]

Line number =[1234567891011121314151617181920212223242526272829 30
3132 33 34 35 36 37 38 39 40 417

IL_meas_position = [1111111111111111111111111111}111111
r1 11117

%Case 1, Possible location = 2N+L-2Ns

Node_number =[12345678910111213 14]";

IN_meas_position=[001110011 1 11 1 1}); %] ismeasured, 0 is unmeasured.

VN _meas_position={001110011 1 111 1]

Line_number =[123456789161112131415161718192021 22232425 2627282930
313233 3435 36 37 38 39 40 41

IL_meas_position = [1]11111111111]1111111111111111111]1
1111111

%4 sites fully, busbar 4,6,7-8, and 9, total 28 possible locations

Node_number =[12345678910111213 14]}

IN_meas_position =[000101111 0000 0]; %! ismeasured, 0 is unmeasured.
VN_meas_position=[000101111 000 0 0]}

Line_number =[12345678910111213 14151617 18192021222324252627 282930
3132333435363738394041];

IL_meas_position=[00000001001 011001010101 000000011111
110117
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sum_IN_meas=sum(IN_meas_position);
sum_VN_meas=sum(VN_meas_position);
sum_IL_meas=sum(IL_meas_position);
sum_meas=sum_IN_meas+sum_VN_meas+sum_IL_meas;
Poss_Loca=sum_meas;

meas_position=ones{sum_meas, 1);

%ith iteration

% '
% '
for Eliminate=1:Poss_Loca
for meas=1:Poss_Loca
if meas_position(meas,1)==
%Step 2: Each row of H is temporary remove, one at a time,
%Then calculated condition number of each H.

174 e e e
/0

[+74 ——
meas_position(meas,1}=0; %Each row of H is temporary remove, to be unmeasured.
sum_meas=sum{meas_position);
Y%Deduct unmeasued row of Y, then save to H (H1,H2,...Hn),
=l
for ii=1:sum_meas
for kk=jj:Poss_Loca
if meas_position(kk)==
for nn=1:sum_state_variable
H(ii,nn)=Y _new(kk,nn);
end

=i+
break
else jj=jj+1;
end
end
end

CondN=cond(H); %Calculated condition number of each H (H1,H2,...Hn).
MinCondN(meas,1)=CondN; %Keep value of CondN in each iteration.
H_last=H;
H=[];
meas_position{meas,1}=1;, %Returned row of H that has been remove for this iteration, to be
measured.
end %if meas_position(meas,1)==1
end %for meas=1;Poss_Loca
%Protection for the moving of the same as the past moved.
for meas=1:Poss_Loca
if meas_position{meas,1)==0;
MinCondN(meas,1)=1e600;
end
end
[Value MeasMove]=min(MinCondN);
if meas_position(MeasMove,1)==0 % Breake if MeasMove same as the past moved
sprintf('%s','MeasMove same as the past moved’)
break
end
MeasMoveKeep(:,Eliminate)=MeasMove;
MinCondNKeep(Eliminate)=Value;
MinCondNKeep_ All(:,Eliminate)=MinCondN;
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%Step 3: Remove this measurement placement location for the next iteration.

LI V4
/Q

0/
L

meas_position(MeasMove,1)=0;

sum_meas=sum{meas_position);

meas_positionKeep(:,Eliminate)=meas_position;

MeasMoveKeep(:,Eliminate)=MeasMove;

Eliminate %Display ith iteration of elimination.

MeasMove %Display the measurement placement location.
end %for Eliminate=1:Poss_Loca, end of this iteration
sprintf{*%s', Done")

MeasMoveKeep=MeasMoveKeep';
Sequential=[MeasMoveKeep MinCondNKeep'];



APPENDIX D
Singular Value Decomposition (SVD) [25]

D.1 Introduction

There exists a very powerful set of techniques for dealing with sets of
equations or matrices that are either singular or else numerically very close to
singular. In many cases where Gaussian elimination and LU decomposition fail to
give satisfactory results, this set of techniques, known as singular value
decomposition, or SVD, will diagnose for you precisely what the problem is. In some
cases, SVD will not only diagnose the problem, it will also solve it, in the sense of
giving you a useful numerical answer, although, as we shall see, not necessarily “the”
answer that you thought you should get.

SVD is also the method of choice for solving most linear least-squares
problems. SVD methods are based on the following theorem of linear algebra, whose
proof is beyond our scope: Any MxN matrix A whose number of rows M is greater
than or equal to its number of columns N, can be written as the product of an MxN
column-orthogonal matrix U, an NxN diagonal matrix W with positive or zero
elements (the singular values), and the transpose of an NxN orthogonal matrix V. The
various shapes of these matrices will be made clearer by the following tableau:

wy

The matrices U and V are each orthogonal in the sense that their columns are
orthonormal,

M 1<k<N

UU =6 D.2
; k™~ in kn ISnSN ( )
N 1<k<N
= Vil =On 1<nsn ®-3)

or as a tableau,



v’ U = vr vV

(D.4)

H

Since V is square, it is also row-orthonormal, V¥7 =1,

The SVD decomposition can also be carried out when M<N., In this case the

singular values w; for j = M + 1;...; N are all zero, and the corresponding columns of
U are also zero. Equation (D.2) then holds only fork; n <M,
The decomposition of equation (D.1) can always be done, no matter how singular the
matrix is, and it is “almost” unique. That is to say, it is unique up to (i) making the
same permutation of the columns of U, elements of W, and columns of ¥ (or rows of
V'), or (ii) forming linear combinations of any columns of U and ¥ whose
corresponding elements of B happen to be exactly equal. An important consequence
of the permutation freedom is that for the case M<N, a numerical algorithm for the
decomposition need not return zero wj’s forj =M + 1; : : ;; N; the N =M zero singular
values can be scattered among all positions j = 1;2;...; N,

D.2 SVD of a Square Matrix

If the matrix A4 is square, NxN say, then U, V, and W are all square matrices of
the same size. Their inverses are also trivial to compute: U and V are orthogonal, so
their inverses are equal to their transposes; W is diagonal, so its inverse is the diagonal
matrix whose elements are the reciprocals of the elements w;. From equation (D.1) it
now follows immediately that the inverse of 4 is :

A=V {diag (-}%—J] U’ (D.5)

J

The only thing that can go wrong with this construction is for one of the w;’s to be
zero, or (numerically) for it to be so small that its value is dominated by roundoff
error and therefore unknowable. If more than one of the w;’s have this problem, then
the matrix is even more singular. So, first of all, SVD gives you a clear diagnosis of
the situation. :

Formally, the condition number of a matrix is defined as the ratio of the
largest (in magnitude) of the w;’s to the smallest of the w;’s. A matrix is singular if its
condition number is infinite, and it is ill-conditioned if its condition number is too
large, that is, if its reciéarocal approaches the machine’s floating-point precision (for
example, less than 10" for single precision or 10" for double).

For singular matrices, the concepts of nullspace and range are important.
Consider the familiar set of simultaneous equations



84

Ax=5 (D.6)

where A4 is a square matrix, b and x are vectors. Equation (D.6) defines A as a linear
mapping from the vector space x to the vector space b. If 4 is singular, then there is
some subspace of x, called the nullspace, that is mapped to zero, Ax = 0. The
dimension of the nullspace (the number of linearly independent vectors x that can be
found in it) is called the nullity of 4.

Now, there is also some subspace of b that can be “reached” by A, in the sense
that there exists some x which is mapped there. This subspace of b is called the range
of A. The dimension of the range is called the rank of A. If A is nonsingular, then its
range will be all of the vector space b, so its rank is N. If 4 is singular, then the rank
will be less than N, In fact, the relevant theorem is “rank plus nullity equals N.”

What has this to do with SVD? SVD explicitly constructs orthonormal bases
for the nullspace and range of a matrix. Specifically, the columns of U whose same-

numbered elements w; are nonzero are an orthonormal set of basis vectors that span -

the range; the columns of V" whose same-numbered elements w; are zero are an
orthonormal basis for the nullspace.

Now let’s have another look at solving the set of simultaneous linear equations
(D.6) in the case that A is singular. First, the set of homogeneous equations, where

b =0, is solved immediately by SVD: Any column of V whose corresponding w; is

zero yields a solution,

When the vector b on the right-hand side is not zero, the important question is
whether it lies in the range of 4 or not. If it does, then the singular set of equations
does have a solution x; in fact it has more than one solution, since any vector in the
nullspace (any column of ¥ with a corresponding zero w;) can be added to x in any
linear combination.

If we want to single out one particular member of this solution-set of vectors
as a representative, we might want to pick the one with the smallest length | x | . Here
is how to find that vector using SVD: Simply replace 1= w; by zero if w; = 0. (It is not
very often that one gets to set 0 = 0 !) Then compute (working from right to left)

x=V {diag (w%]] (U"b) (D.7)

This will be the solution vector of smallest length; the columns of ¥ that are in the
nullspace complete the specification of the solution set,

Proof: Consider | x + x|, where X' lies in the nullspace. Then, if W' denotes
the modified inverse of A with some elements zeroed,

|+ x| =y U b+ x|
=l (wvTb+v7x) D9
=l vTs+v7x|

Here the first equality follows from equation (D.7), the second and third from the
orthonormality of V. If you now examine the two terms that make up the sum on the
right-hand side, you will see that the first one has nonzero j components only where
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w; # 0, while the second one, since x0 is in the nullspace, has nonzero j components
only where w; = 0. Therefore the minimum length obtains for x’ =0, g.e.d.

If b is not in the range of the singular matrix A4, then the set of equations (D.6)
has no solution. But here is some good news: If b is not in the range of 4, then
equation (D.7) can still be used to construct a “solution” vector x. This vector x will
not exactly solve Ax = b. But, among all possible vectors x, it will do the closest
possible job in the least squares sense. In other words equation (D.7) finds

x which minimizes r =|dx - B| (D.9)

The number r is called the residual of the solution. ‘

The proof is similar to equation (D.8): Suppose we modify x by adding some
arbitrary x’. Then Ax—b is modified by adding some b"=Ax'. Obviously b’ is in the
range of A. We then have

|[Ax - b+ b= |(UWVT ) (YW U"B) - b+ b
= |(UWW"‘UT - 1)b+b’| (D.10)
= I(WW" ~1)U"b+U"b]

Now, (WW' — 1) is a diagonal matrix which has nonzero j components only for
w; = 0, while U"}’ has nonzero j components only for w; # 0, since &’ lies in the range
of A. Therefore the minimum obtains for b’ = 0, q.e.d.. ,

In the discussion since equation (D.6), we have been pretending that a matrix
either is singular or else isn’t. That is of course true analytically, Numerically,
however, the far more common situation is that some of the w)’s are very small but
nonzero, so that the matrix is ill-conditioned. In that case, the direct solution methods
of LU decomposition or Gaussian elimination may actually give a formal solution to
the set of equations (that is, a zero pivot may not be encountered); but the solution
vector may have wildly large components whose algebraic cancellation, when
multiplying by the matrix 4, may give a very poor approximation to the right-hand
vector b. In such cases, the solution vector x obtained by zeroing the small w/s and
then using equation (D.7) is very often better (in the sense of the residual | Ax-b |
being smaller) than both the direct-method solution and the SVD solution where the
small w;’s are left nonzero.

It may seem paradoxical that this can be so, since zeroing a singular value
corresponds to throwing away one linear combination of the set of equations that we
are trying to solve. The resolution of the paradox is that we are throwing away
precisely a combination of equations that is so corrupted by roundoff error as to be at
best useless; usually it is worse than useless since it “pulls” the solution vector way
off towards infinity along some direction that is almost a nullspace vector. In doing
this, it compounds the roundoff problem and makes the residual | Ax—b| larger.

SVD cannot be applied blindly, then. You have to exercise some discretion in
deciding at what threshold to zero the small w’s, and/or you have to have some idea
what size of computed residual | Ax—61 is acceptable.
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D.3 SVD for Fewer Equations than Unknowns

If you have fewer linear equations M than unknowns N, then you are not

expecting a unique solution. Usually there will be an N-M dimensional family of
solutions. If you want to find this whole solution space, then SVD can readily do the
job.
The SVD decomposition will yield N-M zero or negligible w;’s, since M < N. There
may be additional zero w;’s from any degeneracies in your M equations. Be sure that
you find this many small w;’s, and zero them, which will give you the particular
solution vector x. As before, the columns of V corresponding to zeroed w;’s are the
basis vectors whose linear comblnauons added to the particular solution, span the
solution space.

D.4 SVD for More Equations than Unknowns

In tableau, the equations to be solved are

A xl=15 (D.11)

The proofs that we gave above for the square case apply without modification to the
case of more equations than unknowns, The least-squares solution vector x is
given by equation (D.7), which, with non square matrices, looks like this,

’ ' \

xl=| ¥V diag (—1—] U’ b (D.12)
W;

\ J

In general, the matrix W will not be singular, and no w;’s will need to be set to
zero. Occasionally, however, there might be column degeneracies in 4. In this case
you will need to zero some small w; values after all. The corresponding column in V'
gives the linear combination of x’s that is then ill-determined even by the supposedly
overdetermined set.

Sometimes, although you do not need to zero any wj’s for computational
reasons, you may nevertheless want to take note of any that are unusually small: Their
corresponding columns in V are linear combinations of x’s which are insensitive to
your data. In fact, you may then wish to zero these w;’s, to reduce the number of free
parameters in the fit.
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D.5 Constructing an Orthonormal Basis

Suppose that you have N vectors in an M-dimensional vector space, with
N < M. Then the N vectors span some subspace of the full vector space. Often you
want to construct an orthonormal set of N vectors that span the same subspace. The
textbook way to do this is by Gram-Schmidt orthogonalization, starting with one
vector and then expanding the subspace one dimension at a time., Numerically,
however, because of the build-up of roundoff errors, naive Gram-Schmidt
orthogonalization is terrible.
The right way to construct an orthonormal basis for a subspace is by SVD: Form an M
< N matrix A whose N columns are your vectors. The columns of the matrix U {which
in fact replaces 4 on output are your desired orthonormal basis vectors.

You might also want to check the output w;’s for zero values. If any occur,
then the spanned subspace was not, in fact, N dimensional; the columns of U
corresponding to zero w;’s should be discarded from the orthonormal basis set.

D.6 Approximation of Matrices

Note that equation (D.1) can be rewritten to express any matrix 4; as a sum of
outer products of columns of U and rows of ¥7 , with the “weighting factors” being
the singular values w;,

N
A,=> wUV, (D.13)

k=1
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\bstract

This paper presents a new fundamental static state estimation algorithm using weighted least square (WLS) estimation, which is
rased on singular va[‘ue decomposition (SVD) rather than the normal equations. In addition, this paper also uses lincar WLS
stimation, which s quicker than non-linear. The §VD approach does not require the whole network system to be observable prior
o estimation. It can provide a solution even if the system under consideration is partially observable. The simulation study was
ierformed on the IEEE 14-bus test system. The simulation results, both linear and non-linear WLS, have shown that the SVD
pproach can provide a sofution even when ill-conditioned occurred while the normal equation approach failed to give satisfactory
esults. In addition, the SVD approach can identify which parts of the network are unobservable islands.

2 2003 Elsevier Science B.V, All rights reserved.

‘eywords: Singular value decomposition (SYD); State cstimation; Weighted least square (WLS)

. Introduction

State estimation processes a set of redundant mea-
arements to estimate the state of the power system.
wnzlog and logic measurements are telemeters to the
ontrol center. Logic measurements are used in topology
rocessor to determine the system configuration. The
late estimator uses a set of analog measurements along
ith the system configuration supplied by the topology
rocessor, network parameters such as line impedance
nd perhaps some pseudo measurements as its input. In
bservability analysis, if the set of measurements is
ifficient to make state estimation possible, thus the
etwork is observable. Usually a system is designed to
¢ observable prior to the state estimation for most
peration conditions. Temporary unobservability may
ill occur due to unanticipated network topology
ranges or failures in the telecommunication systems.
In the conventional state estimation e.g. [1], real and
:active power measurement are used, instead of current

* Corresponding author. Tel.: +66-53-94-4140x134; fax: +66-53-
-1485.

E-mail address; suttic@eng.cmu.ac.th (S. Prenﬁrudceprccchacharn).

measurements, for branch flows and busbar injection,
the measurement equation is non-linear. In such case,
the solution must be obtained through an iterative
algorithm. The phasor measurement unit (PMU) is
used in state estimation as shown in [2]. With an advent
of satellite clock synchronization, phasor metering
achieved a level of precision that made phasor telemetry
a valuable source of measurement data [2]. From [3], bus
injection measurements are considered to be more
important than line flow measurements. This is due to
the fact that a bus injection measurement is tightly
related to more state variables than a line measurement.
In order to improve the measurement redundancy,
which is key to bad data identification, the method
could easily extend to include line currerit measurements
if necessary.

A conventional state estimation methods based on
weighted least square (WLS) method using the normal
equation approach may fail to provide solution when
gain matrix is ill-conditioned due to temporary unob-
servability and if it does not have re-observability
analysis. Even various methods have been suggested to
solve the numerical ill-conditioned problem [4,5], it still
needs observability analysis prior to estimation. In [6],
observability with orthogonalization may be neglected

78-T796/03/§ - see front matter © 2003 Elsevier Science B.V. All rights reserved.
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)y extra computational effort for deletion of unobser-
rable buses. There exists a very powerful set of
echniques for dealing with sets of equations or matrices
hat are cither singular or else numerically very close to
ingular, known as singular value decomposition (SVD).
he SVD has already been used in [7] for harmonic state
stimation with under-determined system. To solve the
inder-determined case, the SVD needs to be applied,
ince convention techniques fail to solve such equations.
n [8] used the SVD approach to detect and estimate
1armonic component in power system from simulated
vaveform. In this paper, by using the busbar phasor
roltages as state variables and measuring busbar phasor
roltages and injection phasor currents make the mea-
urement equation’ linear. When the measurement
:quation is linear, '‘the estimation algorithm is direct,
0 linear equation can be faster than non-linear.

In practical fundamental state estimation the number
»f actual measurements is far greater than the number of
tate variable, As a result, there are many more equation
o solve than there are unknown state variable, the
iystem always is an over-determin:d. In addition, to
sompare the SVD method and the normal equation, the
mder-determined system can not be used. Then this
»aper will use the completely and/or over-determined
iystem.

First of all this paper reviews the static state estima-
ion of power system in Section 2. Then the SVD is
sresented in Section 3. After that, test system and
simulation results carried on the IEEE 14-bus test
system is discussed in Section 4. The state estimation
1sing the normal equation approach comparing with the
SVD approach to solve the linear and non-linear WLS
»f the two approaches will be presented. Finaily, the
:oncluding remarks are made in Section 5.

2. Static state estimation

The task of the state estihation is to generate the best
:stimation of the state variables from measured data,
with corrupted with measurement noise or error. The
‘hree issues involved are the choice of state variables,
performance criteria and selection of measurement
points and quantities to be measured. Various perfor-
mance criteria are possible, the most widely used is the
WLS. For a given measurement set and system topol-
ogy, the basic circuit laws lead to the following
measurement equation.

t=Hx+¢ (1)

where z and x are the vectors of measurements and state
variables, respectively. H is the measurement matrix,
and ¢ is the measurement noise vector, which is assumed
to be made of independent random variables with
Gaussian distribution.

The WLS estimate is, therefore, the vector x that
minimizes the weighted sum of the squares of the
residuals (r = z— Hx) between the actual measurements
and estimated levels, i.e.

Minimise J(x) = (z—Hx)'R~!(z - Hx) @

where R~} is the inverse of the covariance matrix.

Matrix R is diagonal and contains the covariances of
the measurements (if they are known). This permits
applying higher weighting to measurements that are
known to be more accurate. R is replaced by the identity
matrix if the same instrumentation is used to obtain
them.

The solution to Eq. (1) in the WLS sense is obtained
by solving the following equation.

(H'"R™'H)x =(H"R™ ')z 3)

Real and reactive power measurements are used in the
conventional state estimation, the measurement equa-
tion is non-linear. In such case, the solution for Eq. (2)
must be obtained through an iterative algorithm. How-
ever, the measurement equation can be linear by
choosing the phasor busbar voltages as state variables
and measuring phasor busbar voltages and phasor
injection currents. However, to improve the measure-
ment redundancy, it can easily extend to inciude line
current measurements if necessary. It is important to
emphasize that the estimation algorithms for this case is
direct (not iterative). In this case, the task of estimating
busbar voltage (v) by given measurement vector (z) in
the presence of noise () are expressed as:

2] _[1 0 [ [av] 4
[z,] .[Y:M ch} ["C] . & )

where I is identity matrix, z,, z; are voltage and
injection current measurement subvector, respectively,
Y, Yic are the node admittance matrix of measure-
ment and calculated busbar voltage that related to z,,
respectively, v, vc are measurement and calculated
(unmeasured) busbar voltage subvector, respectively, £,
g; are voltage and injection current measurement noise
subvector, respectively. '

3. Singular value decomposition (SVD)

The SVD is a very powerful set of techniques for
dealing with sets of equations or matrices that are either
singular or else numerically very close to singular. In
some cases where Gaussian elimination and LU decom-
position fail to provide satisfactory results, the SVD will
diagnose precisely what the problem is. In some cases,
the SVD will not only diagnose the problem, but it will
also solve it, in the sense of giving a useful numerical
answer, The SVD is also the method of choice for
solving most linear least-squares problems.
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READ SYSTEM DATA AND FORM
CONNECTION MATRICES, NODAL
ADMITTANCE MATRIX.

= =

ADD A ROW TO MEASUREMENT MATRIX
FOR EVERY BUSBAR VOLTAGE AND
INJECTION CURRENT MEASUREMENT

=~ =

PARTITION MEASUREMENT MATRIX
ACCORDING TO WHETHER MEASURED {v,))
OR CALCULATE VOLTAGE (v}

101

= =

REDUCED FORM

z=Hx+e

= =

CONVERT TO A REAL VALUED PROBLEM

!

d

SOLVED NORMAL EQUATIONS
1F NOT SINGULARITY

(H'R'H)x=(H"R")z

SOLVED USING SVD

x=VW'U"z

S~

ANALYSE THE NULL SPACE YECTOR
TO DETERMINE THE OBSERVABILITY
OF THE SYSTEM

4L

CALCULATE THE BRANCH CURRENT AND
BUSBAR INJECTIONS CURRENT

Torn = Yu Vi —¥)
I, =¥

Fig. 1. The algorithm of linear WLS state estimation,

The direct solution of WLS problem from the normal
aquations is rather susceptible to round-off error. That
is one or more of measurement equations are a linear
combination of the others, or a zero pivet or a very
small pivot element may be encountered during the
solution of the linear equations, in which case it has
no solution at all. These numerical difficulties can
happen even in case of non-linear WLS, as mentioned
before. It turns out that the SVD also fizes the round-
off problem. So it is a recommended technique for alt

9]

In the case of over-determined system, the SVD
provides a solution that is the best approximation in
the WLS sense. In the case of under-determined system,
the SVD provides a solution whose values are the
smallest in the WLS sense. In the over-determined or
completely-determined case, the singularity from the
normal equations implies what is known as an unobser-
vable system. In the case of under-determined case, the
singularity implies that there is no unique solution to the
problem. However, the SVD will provide a particular
solution and a null space vector for each singularity.
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\ 2 @ : Generators
(©) : Synchronous Condenscrs

Fig. 2, IEEE l4-bus test system.

The SVD method represents the matrix H (m x n) of
Eq. (1) as the product of three matrices [9]. When m is
the number of measurement placement, and n is the
number of state variable,

H=uwvT )

W is a diagonal matrix (n x n) with positive or zero
slements, which are the singular values of H, Matrices
U and V7 are orthogonal matrices, U being a column
srthogonal (m x ny matrix and F7 is the transpose of a
n x n) orthogonal matrix.

From Egs. (1) and (5) the following expression of x is
sbtained [9], i.e,

¢=VW-'UTz (6)

The algorithm of state estimation in this paper, was
nodified from [10], is shown in Fig. 1. The algorithm
loes not require the whole network system to be
bservable prior to estimation and also can identify
»bservable island in such case.

‘able 1

4. Test system and simulation results

The IEEE 14-bus is shown in Fig, 2 is chosen to verify
the algorithm and compare the performance of the SVD
approach with the normal equation approach in linear
WLS. The parameters are included in Appendices A, B
and C. The simulation assumed that measurement
equipment that can be synchronized is available and
uses the same type, then R in Eq. (3) is a unit matrix.
For complex measurement, voltage and current values
can be assumed that they have PMUs in which the
standard deviations are better than 0.15° confirming
high accuracy of metering hardware [2]. The examples of
random measurement placements are shown in Table 1.

In normal condition, a system is designed to be
observable prior to the state estimation. If temporary
unobservability occurs and has only measurement
placement as in Table [, the simulation will test whether
the SVD approach and the normal equation approach
will provide a solution for state estimation or not.

The methodology used to illustrate state estimation is
as follows, First, the system has partial ‘measured
values’ as in Table 1 and is equal to their corresponding
‘true values’ obtained from IEEE 14-bus test system for
busbar voltage and injection current can calculate from
I=Yv. Then, estimated values throughout the test
system are obtained from the partial ‘measured values’
using the estimator. Finally, all the estimated values are
compared with the corresponding ‘true values’. Since the
measurement noises do not affect the observability of
state estimation [11], they are ignored in this illustration.

From Table I, the SVD approach can provide a direct
solution for an observable island even singularity
occurred in H while the normal equation approach

failed to give satisfactory results. [9] describes variables

corresponding to non-zero ¢lements in the null space
vectors (found in column of V) which relate to zero
singular value of H (diagonal element of W) are the
unobservable region.

The example in case 1 has shown that, the measure-
ment matrix H afterwards converts to real value

ixample of measurements placement and performance of the SVD and the normal equation approach in each case

lase Measurement placement

Busbar voltage # Busbar injection current #

H, zero at column of bus # 5VD shows unobservable at bus # Normal equation

1-5,9,10, 14 1-5,9,10, 14 8,12
1,2,4,58,9 13,14 1,2,4,5,8,9,13, 14 11
1,2,4,58,9, 11,13 1,2,4,58,9, 11,13 -
1-5,9,10,12, 14 1-5,9,10,12 14 8
3,4,6,7,9, 14 1-3,5,6,10-13 8
4-10 I-3,10~14 -

8, 12- Singularity
H Singularity
- Fine

8 Singularity
8 Singularity

Fine
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Table 2

True value of busbar voltage, estimated voltage, and errors between true and estimated voltage

Bus # Voltage (true} Voltage (estimated) Error (true-estimated)
Magnitude (pu) Anglr () Magnitude (pu) Angle () Magnitude (pu} Angle (*)
1 1.060 0.00 1.060 0.00 0.00 0.00
2 1.045 —4.980 1.045 —4.380 0.00 0.00
3 1.010 —12.720 1.010 —12.720 0.00 0.00
4 1.019 —10.330 1.019 —10.330 0.00 0,00
5 1.020 —~8.780 1,020 —8.780 0.00 0.00
5 1.070 —14.220 1.070 —14.220 0.00 0.00
7 1.062 —13.370 1.062 —13.370 0.00 0.00
3 1.090 —13.360 0.00 0.00 1.090 -13.360
2 1.056 —14.940 1.056 —14.,940 0.00 0.00
10 1.051 —15,100 1.051 —15.100 0.00 0.00
11 1.057 -14.790 1.057 ~14.750 0.00 0.00
12 1,055 —15.070 0.00 0.00 1.055 —15.070
13 1.050 —15.160 1.050 —-15.160 0.00 0.00
14 1.036 —16.040 1.036 —16.040 0.00 0.00

problem is zero at columns bus 8 and 12, as shown in
Appendix D. Therefore, this matrix is singular. By the
SVD approach, W'of Eq. (5) as shown in Appendix E
shows the singular values of column 25-28 are zero.
After that, checking at column 25--28 of ¥ from Eq. (5)
as shown in Appendix F, which is null space vectors, bus
8 and 12 are non-zero. Hence, bus 8§ and 12 are
unobservable islands. It means that, the SVD approach
can identify which parts of the network are unobser-
vable.

The estimated value of unobservable regions of the
SVD approach, bus 8 and 12, are incorrect. The SVD
resuit shows significant error (between actual and
estimated value). Table 2 provides the result of case |
as described above, However, the SVD can provide a
correct answer at least 12 buses while the normal
equation approach fail to give any results. The singu-
larity of the normal equation approach in each mea-
surement placement impliecs what is known as not fully
observable system. '

For the conventional state estimation, non-linear
WLS, the state variable of IEEE-14 bus system are 14
buses voltage magnitude and 13 buses voltage angle.
Then, measurement number for completely-determined
is 27. If measurement placement are 13 buses injected
active power at 1, 2, 4-14, and 11 buses injected reactive
power at 1, 2, 5-7, 914, and three buses voltage at 1,
13, 14. Both of the normal equation and the SVD can
provide a correct answer for all state variables. If
measurement place-ment are injected active power, bus
injected reactive power, and bus voltageat 1, 2,4, 5, 7, §,
11, 13, 14, only the SVD can provide a correct answer

while the normal equation approach failed to provide

satisfactory results,
The use of the SVD approach can be significantly
slower than solving the normal equations and requires

more storage for three matrices in Eq. (5). However,
it is less susceptible to round-off error. Moreover, it is
theoretically foolproof reliability more than making
up for the speed disadvantage [10]. Even with the use
of the SVD approach, there is a speed problem.
Fundamental frequency state estimation is normally
used in on-line supervisory control and data acquisition
(SCADA) systems where speed is a critical issue, But,
of course computer speeds are doubling every 3 years
and hence the SVD approach will be just as fast as very
soon.

The further study should include the consideration of
optimal measurement placement for the 8VD approach
and bad data analysis.

5. Conclusion

The development of a new algorithm for static
state estimation based on the SVD method has been
presented. In this paper, the linear WLS is used.
The measurement equation will be linear by choosing
the complex busbar voltages as state variables and
measuring complex busbar voltages and injection
currents, the estimation algorithm is direct (not itera-
tive). However, the non-linear WLS also be tested.
From the simulation study performed on IEEE 14-bus
test system, it is found that the SVD approach
can provide a solution even singularity occurred while
the normal equation approach failed to provide satis-
factory results. In addition, the SVD approach can
identify which parts of the network are unobservable.
The SVD is a highly reliable and computationally
stable technigue to solve matrices that are either singular
or very close to singular. In such case, the SVD
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will indicate the problem and result in a useful 2 5 0.05695 0.17388 0.0340
numerical answer. 3 4 0.06701 0.17103 0.0346
4 5 0.01335 0.04211 0.0128
4 7 0.00 . 0.20912 0.00
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Appendix A: Bus voltages of IEEE 14-bus test system and 12 13 0.22092 0.19988 0.00
calculated injection current [10] 13 14 0.17093 0.34802 0.00
Bus # Voltage (IEEE) Injection current (calculated)
Magnitude (pu) Angle (°) Magnitude (pu) Angle ()
! 1.060 0.00 2.198 4.130
2 1.045 —4.980 0.334 —63.130
] 1.010 —12.720 0.934 169.830
} 1.019 —10.330 0.491 157.210
3 1.020 —8.780 0.354 98.500
] 1.070 —14.220 0.351 —~116.520
! 1.062 —13.370 0.112 —101.580
; 1.090 —13.360 0.159 —102.980
H 1.056 —14.940 0.293 143,850
0 1,051 —15.100 0.103 132.040
| 1.057 —14.790 0.036 138.450
2 1.055 —15.070 0.059 149,350
3 1.050 —15.160 0.145 140.640
4 1.036 —16.040 0.150 146.490

\ppendix B: Line parameters of IEEE 14-bus test system Appendix C: Bus admittance matrix of IEEE 14-bus test

10] system
Jus # Bus # R (pu) X (pu) B (pu)

2 0.01938 0.05917 0.0528

5 0.05403 0.22304 0.0492

3 0.04699 0.19797 0.0438

4 0.05811 0.17632 0.0374

us | 2 3 q 5 6 7 8 9 16 1 12 13 14
6.0250 ~ 49991 4. 0 ¢ —1,0259 + ¢ o 0 0 i} ) 0 0 [t}
19,4471 152631 423500
—-4.9991 + 95213 - —LI350 + -1.6860 4 —L7011 + © ] ) 0 o 0 0 0 0
15.263Li 30,2707 4.7819i 5.11358i 5.1939i
0 —1LE350 +  3.1210- ~1.9360 + 0 0 0 0 ¢ 0 0 0 0 13
4.7819 9.8115i 5.0688i

0 —1.6860 . —1.9860 + 105130 — 68410 + 0O 0+ 0 0+1,7980i 0 0 0 0 L}
51158 . 5.0688i 3830071 21.5786¢ 478191

—1.0259 + -L70I1 -~ D —6.8410 4+ 9.5680 ~ 039679 0 0 0 ] 0 [} [} 0

4,23500 5,193% 21,5786i 34,9274i



105

C. Madtharad et al. | Electric Power Systems Research 67 (2003) 99107

Appendix C (continued)

0

~3.0939
+6.1028i

-1.5260

+3.1760i

-1.9550
+4.0941i

6.5799 - G

0 +3.9679i

17.3407i

¢

0+ 0 +9.0901i

19.5490i

0

0 +4.78191

5.67701
¢+

]

4 =5.6770i

56770

~1.4240
+3.0201i

0

0

—3.9020 +
10.36541
5.7829 —

53261 —

0+

0

0 +1.7989i

24,0925

9.0901i

o

—1.8809

«3.9020 +
10,3654

10

+4.4029i

—-1.880% + 3.8359 —

14,7683

0

~-1.9550 + 0

4.0941i

8.4970i

4,4029%

0

24850
+2.25200
67249 —
0.669T

4.0150 -
54279

o

—1.5260 +
3.1760i

2

=1L1370

~2.4850
+2.2520i

—3,0089 + 0

6.1028i

13

+2.3150i
25610 -
5.3440i

—-L1370

~14240 + 0

3.0291%

14

+2.3150

Appendix D. Matrix H of case 1

14

10

12 13
0 0

6 78 11

14
0
0
0
0
0
0

10

l

Bus #

0000
0000
0000

¢

0

0000

0
]

00060

0000
0000

—4
-3

19 -~15 0

-—15 30 -5 =5
10 -5
-5 38

0
0
0
0

0
0
0
0

0000
0000

1
-2

10

0
0
0
0

0
-5 00
0
-9 060

-2

0

24 -0 -3 0
15 0

-22

=22 35

0
0

5
-5
5

0
0
0
0

0
0000 0
0500 o

0

0
0
]

1o

1

1
-2
-2

~10

-2 0 90

000

6

0000

3

0

0

0000

0

0
0
0
0
0

00 C 0

0

0000

0

0000

6

0000

0

0000

0
0
0
0
0
0
0

000

4
o

¢ 000

0
0

—5

0000
6000

5 0

-19
15

5

-30 5

0006 0

11 -7
10

-2

0 -2

0500
4000
0900
000 4
-5 0000

-38 22 2
—-35 0

22

=17

0.
3

0

-4

10

—24
10

0

-5 ¢

0

1]

sppendix E. Matrix W of case 1

ow # Column #

5 % 27 B

13 4 15 16 17 18 19 20 2 2 2B M4

12

19

o 0

0

6143 0
0

it

0

6143 0
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An Optimal Measurement Placement Method
for Power System Harmonic State Estimation
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and R. Saeng-udom

Abstract--This paper focuses on a new technique for optimal
measurement placement for power system Harmonic State
Estimation (HSE). The solution provides the optimal number of
measurements and the best positions to place them, in order to
identify the locations and magnitudes of harmonic sources., The
minimum condition number of the measurement matrix is used
as the criteria in conjunction with sequential elimination to solve
this problem. Two different test systems are provided to validate
the measurement placement algorithm. A three-phase
asymmetric power system has been tested using the New Zealand
test system, while the IEEE 14-bus test system has been used for
testing a balanced power system,

Index Terms— Harmonic State Estimation (HSE), Optimal
Measurement Placement, Power Quality.

I, INTRODUCTION

THE problem of harmonic pollution in the power networks
has been widely recognized. Standards for limiting this
pollution have been set in many countries [1]. The increase of
harmonics in the power system threatens the quality of the
electricity supplied to consumers, The problem of identifying
the location and magnitude of harmonic sources has become
more important in power system engincering in order to
ensure compliance with the standards.

The Harmonic State Estimation (HSE) is a reverse process
of harmonic simulation, which analyzes the response of a
power system to the given injection current sources. The HSE
uses the harmonic measurements at selected busbars to
identify the location and magnitude of harmonic sources. In
addition, HSE is capable of providing information on
harmonic at locations not monitored.

The design of a measurement system to perform HSE is a
very complex problem. Among the reasons for its complexity
are the system size, conflicting requitements of estimator
accuracy, reliability in the presence of transducer and data
communication failures, adaptability to changes in the
network topology and cost minimization, In particular, the
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number of harmonic instruments available is always limited
due to cost, and the quality of the estimates is a function of the
number and location of the measurement points. Therefore, a
systematic procedure is needed to design the optimal
measurement placement,

A measurement placement algorithm for harmonic
component jdentification is presented in [2], based on
sequential solution and minimum variance eriteria. However,
it addressed the problem of selecting the best location to place
a measurement to identify harmonic sources rather than the
optimization of number of measurements and the estimation of
the exact values of harmonic magnitudes. Furthermore, line
current measurements are not considered. In addition, the
optimal! procedure in [2] needs load and generation data at
each harmonic order for all busbars, which is usually not
available,

In [3] a new symbolic method for observability analysis
(OA) is presented, This method identifics redundant
measurements thus giving the minimum number of
measurements that are needed to perform HSE. However, the
algorithm uses the initial measurement placement add extra
measurements at alternative locations. The method assumes
that al! voltage measurements are not redundant then
considers. the number of unknown state variables and the
number of equations linking these state variables in each
identified group. It should be roted that this method cannot
detect cases when there are two dependent measurement
equations (such as when currents at both ends of a line are
measured) because the actual values are lost.

Therefore, this paper mainly focus on a new technique for
optimal measurement placement for HSE in terms of the
optimal number of measurements and the best locations to
place them in order to identify the location and magnitude of
harmonic sources.

A new HSE algorithm, based on singular value
decomposition (SVD} method, has been presented in [3), [4].
The SVD algorithm does not requirc the whole system
network to be observable prior to estimation. It can give a
solution even if the system under consideration is partially
observable. The SVD will diagnose precisely what the
problem is. In some cases, the SVD will not only diagnose the
problem, but also solve it, in the sense of giving a useful
numerical answer to HSE [5]. Instead of using HSE, [6]-[8]
discuss the issue of applying SVD to detect, locate, and
estimate remote harmonics in the presence of high noise
contaminating frotn voltage or current waveform. The use of
SVD is significantly slower than solving the normal equations
and requires more storage, but is less susceptible to round-off



ertor. Moreover, it’s theorstically foolproof reliability more
than makes up for the speed disadvantage.

First of all, this paper reviews the use of HSE in a power
system (sections Il and III). The proposed: optimal
measurement placement algorithm is presented in section IV
and applied to the lower South Island of New Zealand and
IEEE 14-bus test systems in section V. Finally, concluding
remarks are made in section VL.

II. HARMONIC STATE ESTIMATION

The complete harmonic information throughout the power
system can be estimated from a relatively small number of
synchronized, partial and asymmetric measurements of phasor
voltage and current harmonics at selected busbars and lines,
which are distant from the harmeonic sources [3], [4], [9], [10].
Using harmonic measurements at non-harmonic source
busbars (such as those of generator busbars with no loads
connected) to estimate the system-wide harmonic levels with
under-determined system is presented in [11]. A framework of
HSE can be found in [12]. A system-wide or partially
observable HSE requiring synchronized measurement of
phasor voltage and current harmonics made at different
measurement points is described in [12]. Like recent HSE
algorithms, the present work uses voltage and current rather
than real and reactive power as the observed quantities, for
reasons outlined in [13].

A general mathematical model relating the measurement
vector Z to the state variable vector X, to be estimated, can be
formulated as follows:

Z{n) =I-!(h)X(h)+E(h), )
where Z(%) is a measurements vector, H(k) is a measurement
matrix, X{#) is a state vector to be estimated, E(h) is the
measurement noise at 2" harmonic order.

The measurement matrix can be considered as the matrix
whose elements relate the measurement vector to the state
variable. If the state variable to be estimated is the nodal
voltage, then:

- For nodal currént injection measurement (7y), the relation

to the nodal voltage (Vy) and node-node admittance
matrix (Fyy) is: ‘

; Iy (k) =Yy (R}Vy(h), 2}

- For nodal voltage measurement, the relation to the nodal
voltage is:

Vy(rY =1*v, (), )
where I is identity matrix,

- For line current measurement (f;), the relation to the
nodal voltage and line-node admittance matrix (¥y) is:

I (k) =Y, (W)W, (h). 0

Since the measurement noise in (1) do not affect the
solvability of HSE, they may be ignored [9]. As a result, the
proposed algorithm considers only one harmonic order at a
time, and the variable of 4™ harmonic order in the previous
equation will be left. The system node set ¥ is partitioned into
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two subsets of non-source busbars (¥, 1y, ) and suspicious
busbars (V. 1,), ie.

Vv, I
V = Na , I = No 5
el w2 ®
with I,=0 (6)
Then (2) can be partitioned as follows:
[INO:I = [f"’o.\'o }j\fuNx:”:VNa:I (7)
IN: Y Nsio Y NNy VN:
From (6} and (7), it can be found that:
VNa = —mh'ol-,,:\rm': VN: (8)

From Z=HX, while Z, H and X are related to (2)-(4).
When X is Vy as in (5) and H is partitioned into two subscts of
suspicious and non-source busbars (H,,,H,,), hence:

V 5
z=[{H, H,] [V" } )
Ne
Substitute Fy, from (8) into {9), it yields:

Z= [H.M.l' H No (-i;h:a:\'ofh'am )] VN: (1 0)

When Vy, are known, Fy, can be calculated from (). Then
all state variables can be solved.

[Il. SoLvING THE HARMONIC STATE ESTIMATION

A. Normal Equation

In some applications, the normal equations of (10) that are
equivalent to Z=HX, are perfectly suitable for the linear least
square (LS) probiem. The following expression X is obtained.

(1)

However, this equation is usually under-determined system
because of limitation of harmonic instruments. This resuits in

(II TH ) being singular and a result can not be obtained with

X=(HHYH Z

normal equation approach. Furthermore, cven in completely or
over-determined system, the normal equations may be very
close to singular or ill-conditioned. Although several methods
have been suggested to solve such ill-conditioned problem,
e.g. [14], [15], observability analysis is still needed prior to
estimation. Like SVD approach, another method that does not
require observability analysis before performing HSE is that
of orthogonalizaticn [16].

B. Singular Value Decomposition (SVD) [5], [12]

To solve the HSE problem for the under-determined
case, when only observable islands exist, SVD needs to be
applied, since standard techniques for solving such equations
will fail [12].



Under normal condition, a system is designed to be
completely observable prior to HSE. If the system has
temporarily unobservable regions because of unanticipated
network  topology changes or failures in  the
telecommunication systems, the SVD still can provide correct
answers for the part of the system forming the observable
regions. In addition using SVD removes the need for
observability.

The SVD method represents the matrix H (mxn) of (1) asa
product of three matrices, i.e.

H=UWV", 12)

where W is a diagonal matrix (nxn) with positive or zero
elements, which are the singular values of H, Matrices I/ and
V" are orthogonal matrices. U is a column orthogonal
(mxn) matrix and V7 is the transpose of an (nxn) orthogonal
matrix.

SVD constructs special orthonermal bases for the null space
and range of a matrix. Not only are they orthonormal but, if H
multiplies a column of ¥, a multiple of a column of U is
obtained. {t can be shown that U is the eigenvector matrix of
HH" and V is the eigenvector matrix of H™H. Moreover, WH"™
is a diagonal matrix of eigenvalues, The column of U,
corresponding to the non-zero singular values are an
orthonormal set of basis vectors that span over the range of H.
The column of ¥, corresponding to the zero singular values
are an orthonormal set of basis vectors that span over the null
space.

From (1) and (12), the following expression of X is
obtained, '

X=¥rw'u'z (13)

The solution process for an under-determined system using
SVD can be found in [12). When performing HSE using SVD,
if all the singular values of H are non-zero, then the power
system is fully observable and HSE yields the correct answer
of all node voltages [17].

IV. OPTIMAL MEASUREMENT PLACEMENT ALGCORITHM

There is a limitation to the number of instruments a utility
can afford to place in a power system. The more sensors
connected to the system, the more accurate the parameter
estimation, but the higher the cost. A proper methodology is
needed for selecting optimal sites for the méasuring devices.

The new solution technique presented in this paper provides
optimal number and the best positions to place harmonic
instruments with a limited number of observations, in order to
identify the location and magnitude of harmonic sources. The
minimum condition number criteria of the measurement
matrix, based on sequential elimination, is utilized to solve
this problem.

The condition number of a matrix is the ratio of the largest
(in magnitude) to the smallest singular value,
A matrix is singular if its condition number is infinite, and it
would be considered ill-conditioned if its condition number is
too large. That is if its reciprocal approaches the machine’s
floating-point precision (for example, less than 10" for single
precision or 10" for double precision).
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A brute-force method may be used to compute a
comparative measure for all possible combinations of sensor
placement [2]. The procedure exhausts all possibilities and
yields the true optimal solution for the problem. For an N-bus
system, M possible locations with a limited P measuring
devices to be placed, [M) possible combinations must be

p
computed in order to determine the best locations for placing
instruments, For example a 27 busbar system, 141 possible
locations with 9 measuring devices for 9 suspicious busbars
(N,), the possible combinations are [141] or 4.68x10", Hence
9
the number of possibilities is usually large. The initial
simulations on realistic models of power systems indicate that
the location procedure could be performed in a sequential
fashion. The methodology for sequential elimination is the
best (M+1)} measurement locations containing the best M
locations (for all M). The sequential procedure has proven
itself to be valid in many cases and is always near optimal [2].

The benefits gained from using the sequential procedure are
dramatic because of the reduction in the number of possible
combinations (as compared to complete enumeration). The
sequential procedure need not be repeated from the beginning
when increasing or decreasing the number of sensors. In
general, for N-bus system, M possible locations with P
measuring devices are to be placed. The sequential procedure
needs only to compute P(2M+1-P)2 combinations to
determine the best, near optimal instrument locations [2].
Hence the amount of computation required by the sequential
procedure is small compared with complete enumeration of a
realistic size system. For example, a 27 busbar system, 141
possible locations with 9 measuring device, the sequential
procedure requires 1,233 combinations to be computed,
instead of the 4.68x10" combinations required by complete
enumeration.

The placement of measurement points is normally assumed
to be symmetrical (e.g. either three or no phases measured at a
location). However, this requirement restricts the search for
the optimal placement of measurement points in three-phase
asymmetrical power systems. As a result, all possible
measurement Jocations for an N-bus system in this paper
include all injection currents (N locations), all node voltages
(N locations), and all line currents (L locations, both sending
and receiving ends). In fact, the measurement placement at
non-harmonic source busbar (Np locations) yields less useful
information than those of suspicious busbars, However, the
proposed measurement placement algorithm will be tested for
both the case of all possible locations (2N+L locations) and
the case where the injection currents and node voltages at non-
harmonic source busbars are not  included
(2N-+L~2Ny locations).

Fig. 1 shows a flowchart of optimai measurement
placement algorithm. From all possible locations, the
measurement matrix can be formulated using (2)-(4). The
objective function is the condition number of the measurement
matrix.
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Fig. 1. Flowchart of proposed algorithm for measurement placement.

Due to cost the number of available harmonic instruments
is always limited so that the measuring devices (P) have to be
minimized. However, to improve the measurement redundancy
(which is key to bad data identification), therefore virtual and
pseudo measurements should be included in the measurement
matrix. Virtual measurements provide the kind of information
that does not need metering (e.g. zero harmonic current
injections at switching substation and at non-harmonic source
bus). To obtain a virique solution (.e. completely observable
system), the minimum required number of harmonic instruments
has to be equal to the number of state variables. As a result, for
N state variables, in order to minimize P, M has to be minimized
as well. Therefore the algorithm needs to iterate until M=N for
to ensure a completely observable system. It means that the
number of computations needed is M—N iterations.

In each iteration each possible location is temporarily
eliminated one at a time and then the condition number of the
corresponding measurement matrix is calculated (step 2), yield
Cond 1 (1* row of H was eliminated), Cond 2,...,.Cond M
(M" row of H was eliminated). The location that has a
minimum condition number from step 2 will be eliminated
sequentially to reduce the number of M for the next iteration
(step 3). This means that the condition number of a new
measurement matrix in step 3, after eliminating location that
has minimum condition number from step 2, will have the best
(minimum) condition number (for example, the harmonic
instrument in the 2" row of the corresponding H in fig. 1 will
be removed). The minimum condition number of the
measurement matrix K, the {ll-conditioned of the
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measurement matrix, will be minimum as well. As a result, the
measurement matrix of this proposed algorithin is always not
singular that ensures system solvability. Again, in such a case,
all state variables can be obtained when all singular values of
the measurement matrix are non-zero [17]. The iterative
procedure is performed unti! M=N (step 4), that is, a row of
the measurement matrix H will be eliminated by every
iteration. The number of possible locations will be reduced,
from M to M-1, M~2,..., M~-(M-P). The remaining locations
after sequential elimination, base on minimum condition
number, should be optimal or near optimal for the
measurements [2].

Because load information is not available prior to
performing HSE, the loads are not represented in (2) but their
current is part of the estimated (or measured) harmonic current
injection. The methodology of HSE, for testing the
mieasurement location is; (i) Assume that the partial ‘measured
values’ from the measurement points are equal to their
corresponding ‘true values’ plus some random noises
generated with Gaussian distribution (if necessary), (ii)
Estimate the values for all state variables using the estimator
from the partial ‘measured values’, (iii) Compare estimated
values with the corresponding ‘true values’ (results of
complete simulation).

V. APPLICATION EXAMPLE

Two test systems are used to test the proposed measurement
placement algorithm, These test systems also illustrate the
complexity of designing a2 measurement system to perform
HSE. The first test system is the Lower South Island of New
Zealand system, which is a threc-phase asymmetric power
system, The second is the IEEE 14-bus test system and this is
a balanced system hence single-phase representation is
adequate. ‘All nodes or busbars with loads connected are
treated as suspicious nodes. The remaining nodes are non-
harmonic source nodes. It is assumed that the suitable
meeasurement equipment capable taking synchronized
meeasurements is available. The proposed algorithm for
measurement placement and HSE is written using
MATLAB®,

A. Test System I (The New Zealand Test System)

The proposed algorithm is tested using the 220 kV
interconnected transmission grid below Roxburgh in the South
Isiand of New Zealand. Three-phase modeling is applied to
take into account imbalances and the coupling between phases
at harmonic frequencies. This is achieved by using a
transmission line parameter to calculate the electrical
parameters of the lines from their physical geometry. Fig, 2
slsows the three-phase diagram of the test network, The
system includes 8 transmission lines represented by the
equivalent IT model. The three synchronous generators are
modeled as shunt branches and generate no harmonic currents.
The five transformers are connected in star-delta. In the test
sy stem, there are 27 nodes, 111 branches, and 87 lines. Three
loads are connected at Tiwai 220 kV (nodes 1--3), Invercargill
32 kV (nodes 22~-24) and Roxburgh 33 kV (nodes 4—6). The

ac tual harmonic sources are twelve-pulse rectifiers at Tiwai. -

Because a three-phase system is used, each busbar includes
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three nodes. Therefore, there are !8 non-harmonic source
nodes (Np) and 9 suspicious nodes (N,) in the test system.
There are 141 possible measurement locations (M), given that
there are 27 locations for injection current measurements, 27
locations for node voltage measurements and 87 locations for
line current measurements.

B, Test System Il (The IEEE [4-bus Test System)

A schematic of the [EEE 14-bus test system is shown in
Fig. 3. There are 14 busbars, 35 branches, and 41 lines. The
equivalent IT model is used to represent each transmission
line, with the electrical parameters being calculated from the
physical geometry using a transmission line parameter
program [18]. As the physical geometry is not available for
the IEEE 14-bus test system a trial and error procedure is used
to obtain a physical geometry that gives, as close as possible,
the correct positive sequence impedance (R and X) and
susceptance (B) at fundamental frequency. For all short lines,
the susceptance is not modeled (as set to zero in the IEEE 14-
bus system). For all long lines it is possible to medel all R, X,
and B values with an absolute error less than 9x10*,
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Fig. 2 The New Zealand test system.
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Fig. 3. IEEE 14-bus test system,
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The system consists of 10 loads connected at busbars 3-5,
and 8-14 [19]. There are 4 non-harmonic source nodes (Ng)
and 10 suspicious nodes (N,) in the test system. The two
harmonic current sources are a twelve-pulse HVDC terminal
at busbar 3 and an SVC at busbar 8, The source spectra are
provided in Table 1.4 of [19). There are 69 possible
rreasurement locations (M), given that there are 14 injections
current measurements, 14 busbars voltage measurcments and
41 lines current measurements.

Actually the state variable of the test system I and II are 27
and 14, respectively. Using HSE algorithm as described in
section II, the number of state variable can be reduced to the
number of suspicious nodes. There are 9 and 10 for the test
system I and II, respectively.

C. Test Results

To obtain a unique solution for an N-bus system, the
miinimum required numbers of harmonic instruments (P), for all
possible locations (M), has to be equal to the number of state
variables, As a result, the optimal number of harmonic
instruments is equal to the number of state variables. In the
proposed algorithm, the measurement matrix of each harmonic
order is considered one at a time with the objective of
minimizing the number of measurements. Two cascs are
considered: Case [ is starting from all possible locations (2N+L
locations); while in Case II, harmonic current injections and
busbar voltage at non-harmonic source busbars are not
irncluded (2N+L-2N, locations). The measurement placements
obtained by using this algorithm, which make the two test
systems full observable, are shown in Tables I and IT.

TABLE1]
MEASUREMENT PLACEMENT: TEST SYSTEM |
Harmonic Injection Node .
grder - Case c'rl.lrrent voltage Line: cyent

5 1 22,24 No 16,18,21-24,35

1 6,24 No 16,17,22-24,34,35
7 1 4,22,24 2 11,17,19,35,73

H 4,23.24 No 11,17,21,34,73,75
11 1 4 22-24 56,61,63,76,81

1 No 22-24 12,17,55,56,79,81
13 1 No 4-6,22-24 22,74,75

1l No 2,4-6,22-24 54,58
17 1 No 5,6,8,22-24 12,16,24

11 No 1,3-6,22-24 26
19 I No 4-6,22-27 No
23 | No 4-6,22-24 54,65,67

i1 No 4-15,22-24 52,66,68
25 | No 3-6,22-24 34,42

1i 22 3-6,22-24 42

TABLE II
MEASUREMENT PLACEMENT: TEST SYSTEM II
(CASEI ONLY)
Harmonic | Injection .
Busbars voltage Line current
order current

5 No 3,8-14 7,40
7 No 3,4,9,10,12-14 3,16,36
11 No 3,5,8,10-12,14 7.20,34
13 No 3,5,8,10-12,14 7,20,34
17 No 4,8,10-12,14 3,5,20,34
25 No 4,5,8,10-12,14 520,34




When the system is fully observable (as shown in Tables |
and II}, both normal equation and SVD can be used to solve
the problem. Unfortunately, it was found that the test systems
are not fully observable with some measurement placements
that have not been shown in Tables I and II. To solve HSE
directly (without any extra computation effort) in such cases
requires SVD. This yields correct answer at all observable
bugbars [17].

It should be noted that the network configurations of the
two test systems are completely different. In addition, the ratic
of state variables to possible locations is quite different. There
are 9 state variables for 141 possible locations in test system I,
while test system II has 10 state variables for 69 possible
locations, When the number of state variables is quite high
compare with the number of possible locations (in Case I of
the test system II) measurement placement solution rcsulted in
all 10 suspicious busbar voltages,

Moreover the measurement placements are different among
harmonic orders, but all of the measurement placements from
all harmonic orders as shown in Table I and Table II are
sufficient to uniquely calculate all state variables for all
harmonic orders of the system correctly. Example, harmonic
instruments location from harmonic order 5 in Case { can be
used to calculate all state variables for all harmonic orders. In
such a case, both normal equation and SVD can be used to
solve the problem.

However, minimizing the number of channels (harmonic
instrument) does not necessarily result in lower cost because
the predominant cost is in the base unit (site), while the
incremental cost for additional channels is relative small. An
optimal measurement placement of this proposed method is to
minimize the number of sites and also to minimize the number
of total harmonic instruments (to be equal to the number of
state variables) thus reducing the monitoring costs attached to
HSE. At the same time, using minimum condition number of
the measurement’ matrix with sequential elimination
simutaneously increases the HSE solvability.

To minimize the number of site, a trial and error procedure
base on condition number analysis will be used.

I. Fully measurement placement at all possible locations

at each site should be considered (shown in Table 1II).
The site that has minimum condition number and
measurement matrix is not singular should be selected
in the first priority. Next, perform HSE with this fully
measurement placement, if it is enough to solve all
state variables (all singular value of a measurement
matrix are non-zero), then use the proposed algorithm
to reduce the number of harmonic instruments is
applied. On the other hand, if one site is not enough to
solve the problem, more sites may be added using
condition number analysis, one by one.

2. If the numbers of possible locations in each site quite
small compare with the number of state variables (such
as test system II), the number of possible harmonic
instruments in each site should be considered. The
more possible locations, the more harmonic
instruments could be placed. For example, busbars 4,
7-9 (same site) of test system II, which has a dominant
number of possible location (22 locations) compare
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with the other sites, should be selected first (shown in
Table IV).

TABLE III
FULLY MEASUREMENT PLACEMENT IN EACH LOCATION: TEST SYSTEM [

Injection
. current . Possible Condition
ate. and Node Line current locations number
voltage
Tiwai 1-3 70-75,82~87 18 3.16x10"*
7-21,52-54, 16
Roxburgh - 39 7.45x10
Ly 4-12 58-60
1-6,22-33
Manapouri = * g 48 1.37x10'7
3 Tl 40-45,76-81
. 34-39,46-51 :
Invercargill - ’ 1 36 5.46x10°
T 2227 55-57,61-6%

From the simulation result using fulty placement be shown
in Table III, only fully placement at Invercargill that
measurement matrix is not singular (double precision). It
should be noted that, the condition number quite large (some
singular value of a measurement matrix near zero). So, a
measurement matrix may be not sufficient to solve all state
variables correctly. HSE has to be performed to test
solvability. Form HSE we know that fully placement at this
site can be solved all state variable. Then the proposed
algorithm with those possible locations is employed. The
optimal measurement placements of this system, using the
measurement matrix of the 5 harmonic, are node voltages at
busbars 22, 25-27 and line currents at lines 56, 61, 63, 64 &
68.

TABLEIV
FULLY MEASUREMENT PLACEMENT IN DOMINANT LOCATION: TEST SYSTEM II

Injection 4 -
. . Possible | Condition
Site current end Line current locations number
Node voltage
Busbars 4, Busbars 4, 8,11,13,21,23, j
7.9 79 313841 22 Infinity
4,10,14,15,17, : .
Busbars 5-6 Busbars 5-6 19,39.40 2 Infinity
Busbar 2 Busbar 2 2,5,7,9 6 Infinity
Busbars 4, 4,8,10,11,
7-9 and Busbars 4-9 13-15,17,1%, 34 16.11
Busbars 5-6 21,23,31-41
B;m;m:;’ Busbhars 2,5,1.89,11,13, 28 Infinity
=47 a
Bushar 2 24,79 21,23,31-38,41

To minimize the number of sites for test system II, the
earlier guideline 1is considered. From the network
configuration, the process should start from busbars 4, 7-9.
The value of the condition number of busbars 4, 7-9 (infinity;
fizst line of Table IV) indicates that the measurement matrix is
singular, Hence more sites have to be added, i.e. busbars 5§ &
6 (both at the same site), which gives many possible
measurement locations {12 locations). From the condition
number of these two sites, it is known that fully placement at
busbars 4-9 are sufficient to solve all state variables (all
singular value of a measurement matrix are non-zero). Again



the proposed algorithm 1is employed. The optimal
measurement placements of this gystem, using the
measurement matrix of the 5" harmonic, are node voltages at
busbars 4-9 and line currents in lines 4, 8, 17 & 23. To solve
HSE directly (without any extra computation effort) in such a
case, the measurement matrix is singular {condition number is
7.45x10'), only SVD can be used and yield partially correct
answer at observable busbars. However, to make the
measurement matrix fully observable, more harmonic
instruments have to be added using condition number
analysis. The previously removed harmonic measurements, by
sequential elimination, have to be added. These are line
currents in lines 15 and 21. On the other hand, if the
measurement matrix of the 17" harmonic is used, the optimal
measurement placement will be the busbar voltage at busbar 8
and line currents in lines 4, 8, 11, 15, 17, 19, 21, 23 & 34,
resulting in the fully observable system. '

Typical results obtained by using the HSE algorithm for
node or busbar injection currents for up to the 25 harmonic
order of the test systems are shown in Figs.4—5 while node or
busbar voltages, and line currents throughout the test system
could be found in [3])-[4], [9]-{12].

Harmenic o dee

Fig. 5 Node hanmonic injection currents of the [EEE 14-bus test system.
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Generally the estimation for phase angle is less accurate
than the estimation of the magnitudes of the same quantity,
However, it does not affect the identification of harmonic
source location, since it is able to identify the harmonic source
with sufficient magnitude for each harmonic of interest.

The iype of harmonic sources can also be identified. In the
test system I, in evident that a six-pulse converter exists at
Tiwai busbar because the injection currents at the 5", 7%, 11",
13% 17" 19", 23", and 25" harmonics have been identified.

In the test system II, the injection currents at the st gt
139 13% 17" 19" 23% and 25" harmonics have been
identified at busbar 3 and busbar 8 by performing the HSE. Tt
is found that the harmonic sources exist at busbars 3 and 8.

V1. CONCLUSION

A new technique for optimal measurement placement for
power system Harmonic State Estimation (HSE) has been
presented. The minimum condition number of the
measurement matrix is used as a criterion in conjunction with
sequential elimination to reach the near optimal measurement
placement. It is found that, the algorithm can yield a solution
for the measurement placement that makes the power system
completely observable. :
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