CHAPTER 2

State Estimation and Harmonic State Estimation of Power System

In this chapter a review of state estimation methods applied to power network
is given. A historical perspective of estimation theory, and their applications to power
systems are presented. In addition, this chapter gives a summary of the formulation of
the Harmonic State Estimation (HSE) problem. More detailed theory can be found in
[17]. Finally, a basic concept of bad data analysis is presented.

2.1 State Estimation

For many years, estimation theory has been used mainly by astronomers as a
means of reducing observations to obtain the orbital elements of minor planets and
comets. The first attempt to apply the estimation theory to power systems is
introduced by Gauss and Legendre (1800s). In 1960s, state estimation was applied to
power systems for fundamental frequency power flow studies in [18]. The basic idea
of state estimation is to fine-tune state variables by minimizing the sum of the residual
square of the error between estimated and actual values, This is the well-known least
squares (LS) method.

State estimation is now an essential part in energy management systems, The
advantages of using state estimation are: (1) the state estimation algorithm produces
quantities, which are the best possible estimation of the true value, even with
measurement error, (2) the ability to detect and identify bad measurement, and (3) the
ability to estimate quantities which cannot be measured and telemetered.

In system theory, the way of predicting the value of an unknown system state
variable based on the measurements from that system, according to some criteria
defined as state estimation. This term is used in electric power engineering to refer to
techniques for the calculation and/or approximation of system bus voltage
magnitudes, phase angles, and other related quantities. In practice, the state estimation
process involves inexact redundant measurements and is based on statistical criteria
that finds the true values of the state variables to minimize or maximize the selected
criteria. These techniques differ from power flow studies because the latter is a
solution of N equations of N state variables to a prescribed tolerance. In general, a
state estimator, which may be both static and dynamic, can be used to (1) smooth out
small random errors in meter readings, (2) detect and identify gross measurement
errors, and (3) fill in nonexistent meter readings due to communication failures.
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Figure 2.1 Illustration of SCADA system [19].

The principle applications of state estimators in power engineering are in real-
time supervisory control and data acquisition (SCADA). Figure 2.1 shows a
schematic diagram of the information flow between the various functions of a
SCADA. Network analysis (i.e., power flow study, unit commitment analysis, and
economic dispatcl) requires telemetered or estimated system data such as voltages,
currents, active and reactive power measurements, as well as system status data.
These data come from remote terminal units (RTUs), that encode measurement
transducer outputs and opened/closed relay status information into digital signals that
are transmitted to the operations center over communication circuits. The actual field
measurements are often a primary source of network data. Because, a measurement of
all required data is impractical, and some RTUs may be possibly failed, a state
estimator is used. To perform the state estimator, information about the network
topology is necessary to know how the transmission lines are connected to the load
and generation buses. The state estimation of a power system is formulated from the
basic equations of system voltages and line flow. The state variables are the voltage
magnitudes and phase angles with respect to a reference (slack) bus, at all busses.
Eventually all other quantities such as the line MW-MVAR flows, and currents or
voltages at any other point can also be obtained. There are many important points that
must be taken into account for assessing the efficiency of any developed algorithm
designed to study the state of a system. These points may be summarized as follows:

(i) Number of data measurements used must be as small as possible for
economic reason,

(i) Time needed for estimation calculation, and

(iit) Accuracy of the results,
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In short, the function of the state estimator is to smooth out small random
errors in telemetered data into a reliable estimate of the transmission network and
state by accounting for:

(i) Small random metering and communication €rTorSs,

(i) Uncertainties in system parameter values,

(iii) Bad data due to transients and meter communication failures,

(iv) Errors in the network structure due to faulty circuit breaker status, and
(v) Missing or unmeasured data.

The development of a classical approach for power system estimation was
based on a LS technique. The solution of LS problem obtained directly from the
normal equations is rather susceptible to round-off error or ill-conditioned. In
addition, several other methods have also been suggested to alleviate the ill-
conditioning problem of the LS estimator., The following is a list of some of these
methods including a brief review of their characteristics and form [19]:

(i) Newton’s Method for Il-Conditioned Power Systems (State Estimation)

The measurements, states and measurement errors are related by the
following nonlinear equation:

Z=H(x)+E (2.1)

where Z is the (Mx1) measurement vector, H(x) is the vector of nonlinear
functions, x is the (Nx1) state variable vector, E is the measurement error vector, M is
the number of measurements and N is the number of state variables. When large
redundant data (M > N) is the case, the weighted least square (WLS) estimator works
very well. However, when M = N and the system is ill-condition (eigenvalues are
widely separated or the condition number is much greater than 1}, the WLS estimator
will oscillate around the solution point of a quadratic criterion function. Tripathy,
Cahuhan and Prasad (1987) have suggested the use of Newton’s method as a
modification to the WLS algorithm. As a result, it was concluded that Newton’s
method is superior to the WLS in ill-conditioned power systems because of the
second-order convergence characteristics of Newton’s method.

(ii) Hybrid State Estimator

In this technique, the usua! equations used by WLS state estimator is
solved iteratively, where the triangular factorisation is carried out using orthogonal
transformations. Monticelli, Murari and Wu (1985) have studied this method and it is
reported that this hybrid state estimator is numerically robust and stable with the
alleviation of the ill-conditioning problem associated with the normal equation,
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(iif) Linear Programming Based State Estimators

Based on linear programming, state estimators consist of finding the best
estimation of the state that minimizes the sum of the error distances of the solution
point to the measurement hyperplanes. Irving (1978) has formulated the linear
programming (LP) method with equality constraints, and later Lo (1988) has
developed an efficient and reliable LP algorithm for two-level power system state
estimation. It shown that this technique had the advantage of bad data rejection, while
retaining a useful degree of noise filtering. Convergence of the method when applied
to nonlinear network problems is equal to or better than the WLS solution.

(iv) Nonlinear Programming in Power System State Estimation

Similar to LP state estimation, the nonlinear programming (NLP) process
estimates the values that lie on the intersection of p hyperplanes in p-dimensional
space. The estimator will select a set of p-hyperplanes from available values to
minimize the objective function. NLP state estimators preserve the LP properties of
combining the automatic bad data rejection with a reliable degree of noise filtering.
However, none of NLP methods can be expected to solve all the problems accurately
and efficiently. Abbasy and Shahidehpour (1987) have applied the NLP state
estimator based on the Powell algorithm. Using this method, it was observed that the
solution obtained from using NLP is more accurate than both WLS and LP methods
in several applications, e.g. bad data detection and rejection of estimated states not
being measured. Also, this method is relatively fast and does not restrict the system
studies to Gaussian-distributed noise.

(v) Neural Network Application

Neural network has been developed as a method of using a large number of
simple parallel processors to recognize pre-programmed patterns. This approach can
be adapted to recognize learned patterns of behavior in electrical networks. The neural
network must ‘learn’ to associate the available power network data patterns with
patterns of harmonic source behavior. This behavior can be learned from system
operating data and data obtained from temporary harmonic source monitored at
known sources. The neural network will then estimate harmonic sources based on
experience in the same way an experienced operator infers pseudo-measurements
from available data from conventional state estimation. This approach has been
investigated by Hartana and Richards [7]. It was concluded that neural networks can
be used to perform rough initial estimates of harmonic sources in power systems. The
advantages of using a neural network are that no system model is needed and it has
the possibility of high-speed calculation if implemented on a parallel-processing
computer. However, this is totally unproven and not thoroughly tested. The
disadvantages include the fact that the neural network method requires training. The
training set can be quite large and even though it is applied off-line, it can be
excessive. In addition, a method to synthesize a neural network is presently lacking.
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(vi) Kalman Filter Application

|

During the past decade, many attempts were made to explore the time-
varying nature of the state of an electric power system, One is the dynamic state
estimation based on extended Kalman filtering technique (1960). In the basic LS
fitting, the estimated parameters are assumed constant during the observation period
and the measurement is corrupted only by noise. The Kalman filter is a LS estimate in
which a state equation is added to allow its application to a dynamic system where the
estimated parameters are varying. Its principal feature is the recursive processing of
the noise measurement risk. This makes it ideally suitable for on-line estimation of
varying parameters. At harmonic frequency, Dash (1988) has used Kalman filtering
for estimation of the harmonic content for a bus voltage signal corrupted with noise.
Later, Beides and Heydt (1990) have extended the work by including the power
network model at various harmonic frequencies.

(vii) Singular Value Decomposition (SVD)

Reference {20] has presented a new fundamental static state estimation
algorithm using linear WLS estimation, which is based on SVD rather than normat
equations. The simulation study is performed on the IEEE 14-bus test system. The
- simulation results have shown that the SVD approach can provide a solution even
when the system is ill-conditioned, while the normal equation approach failed to give
satisfactory results. In addition, the SVD approach can identify that which parts of the
network are unobservable island. Furthermore, the SVD approach does not require the
whole network system to be observable prior to the estimation, it can provide a
solution even if the system under consideration is partially observable.

2.2 Harmonic State Estimation

The task of Harmonic State Estimation (HSE) is to generate the best
estimation of the harmonic levels from limited measured harmonic data corrupted
with measurement noise. The three issues involved are the choice of state variables,
some performance criteria, and the selection of measurement points and quantities to
be measured.

Various performance criteria are possible. The most widely used is the WLS
based on LS methed. This method minimizes the weighted sum of the square of
residuals between the estimated harmonic levels and the actual harmonic
measurements. Other possible criteria are: Maximum Likelihood, Weighted Least
Absolute Value (WLAYV), Least Mediar of Squares (LMS), Minimum Variance, and
Non-quadratic Estimators.

LS method has become the cornerstone of classical statistics, because of its
simplicity. At the time of its invention, there was no computers, and the fact that the
LS estimator could be computed explicitly from the data (by means of some matrix
algebra) made it the only feasible approach. Even now, most statistical packages still
use the same technique because of tradition and computational efficiency.
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Figure 2.3 HSE and harmonic power flow [17].

The framework of HSE is illustrated in Figure 2.2, It uses a three-phase
system model to describe asymmetrical conditions, such as circuit mutual coupling,
impedance and current injection imbalances. A partial measurement set consisting of
some bus voltages, injection currents and line currents, bus injection Volt-Amperes
and line Volt-Amperes, are also needed.

HSE is a reverse process of harmonic power flow as shown in Figure 2.3.
Harmonic power flow is used to analyse the response of a power system and harmonic
penetration throughout the power network from harmonic injection current sources.
On the other hand, HSE uses harmonic measurement at some buses to identify the
harmonic sources and also provides information on harmonic penetration throughout
the power network.

Recent contributions in [6-13, 21-22] have extended the concept of HSE and
identification of harmonic sources. However, a full measurement of the system states,
by first recording the voltage and current waveforms at nodes and lines and then
deriving their frequency spectra, is prohibited for a large system. Only partial
measurement (not necessarily made at the harmonic sources) is practical and,
therefore, the measurements must be complemented by using system simulations. If
the estimation procedure is sufficiently accurate, it is even possible to identify types
as well as locations of the harmonic sources from their harmonic spectrum.
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The main applications of state estimation in power quality engineering are
[24]:

- Estimation of harmonic signal levels in the network,

- Estimation of harmonic signal levels at points of common coupling,

- Estimation of power quality indices {(e.g., Total Harmonic Distortion
(THD)) from on-line data,

- Estimation of injected noise and harmonics at bus for the purpose of
identifying the location of loads which cause power quality problems,

- Mitigation of the effects of poor power quality on measurements,

- Identifying bad data, and

- Giving a second solution method to supplement measurements.

HSE is a very efficient and economic tool to provide system-wide or partially
observable solutions for the assessment of the harmonic contents in a power system.
Based on the network topology, the system admittance matrices at harmonic
frequencies and the placement of measurement, a system-wide harmonic state
estimator can be formulated. The measurements of voltage and current harmonics at
selected buses and lines are sent to a central workstation for the estimation of the bus
injection currents, bus voltages and line currents spectrum at all or selected positions
in the network.

The ability to determine the locations and magnitudes of non-fundamental
frequencies injections is important and enables cost-effective solution. The complete
harmonic information throughout the power system can then be estimated from a
relatively few synchronized, partial, and asymmetric measurements of phasor voltage
and current harmonics at selected buses and lines away from the harmonic sources
with under-determined system [3, 10-12]. Using harmonic measurements at non-
harmonic sources buses, such as those of generators, without loads or linear loads, to
estimate the system-wide harmonic levels with under-determined system are
presented in [13].

A system-wide or partially observable HSE requires a synchronized
measurement of phasor voltage and current harmonics made at different measurement
points, as illustrated in Figure 2.4.
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Figure 2.4 System-wide harmonic state estimation {23].



15

HSE turns multi-point measurement to system-wide measurement in a very
economical way. Two important optimisation problems in HSE are the maximum
observable subsystem for a given measurement placement and the minimum number
of measurement channels needed for the observability of a given system. If the
measurement is continuous and the processing speed is fast enough, the HSE can be
implemented continuously in real time. Potentially, the harmonic monitoring
measurement and estimator can then be integrated into an existing SCADA system.

2.2.1 Harmonic Measurement-State Variable Models [10]

A Three phase power system is modeled as an oriented graph. Let N be a
set of all nodes (or bus of each phase) excluding a reference node, B be a set of all
branches, and L be a set of all lines connected to the given nodes. The example
illustrated in Figure 2.5

Figure 2.5 Oriented graph of a power system [10].
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Let Cy;, Cr and Cpy be node-line incident matrix, line-branch incident
matrix, and branch-node incident matrix, respectively, i.e.
(+1 ifline j is from node i with injection arrow;
C.(, ))=4~1 ifline j is to node i with injection arrow;
L 0 otherwise.
(+1  if branch j is from line i
C,x(i,/)=s=1 if branch j is to line i, (2.2)
| 0 otherwise.

+1  if branch i is from node j with injection arrow,
Con G, JY=<-1 if branch i is to node j with injection arrow,
0 otherwise.

Obviously, we have:

=
Con = (CNLCLB) (2.3)
where T denotes an operator of vector or matrix transpose.

For each harmonic frequency 4, let ¥x(%) and Iy(%) be phasor vectors of node
voltages and injection currents; I;(%) be a phasor vector of line currents; Va(h) and
I5(h) be phasor vectors of branch voltages and currents, and ¥zp(h) be a primitive

branch admittance matrix. Using Kirchhoff’s voltage and current laws, as well as
Ohm’s law,

V, (B) = Cou¥y (1)
I, (h)= Cul, (h)

I, (h) =Cpl, (h)

I (h) =Yy (h)VB (h)

(2.4)

It follows that:
Iy (h) = CNLCLBIB (B) = Con¥as (V5 () = C Y (h)CBNVN (k)

" (2.5)
I, ()= C ¥ (W)W, (B) = C ¥y (B CoV (R).

Let
T ()= CiTa () o 6
Yo (h) = s (1) .

Then, we have:
1, (R) = Yo (Y, ), on

I, (h) =Yy (h)VN (h)
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2.2.2 Harmonic State Estimation Algorithm

HSE technique uses few synchronized harmonic measurement data as
input to find the harmonic penetration for the whole network. The solution process of
HSE is shown in Figure 2.6.

A general mathematical model, which relates the measurements vector Z to
the state variable vector X to be estimated, can be formulated as follows:

Z(h) =H(h)X (h)+E(h) ‘ (2.8)

Where Z(%) is a measurement vector,
H(h) is a gain or measurement matrix,
X(h) is the state vector to be estimated,
E(h) is a measurement noise at 4™ harmonic order.

2.2.2.1 Measurement Vector; Z(})

Z{h) is a vector of available measurements, which consists of measured
phasor voltages and injection currents at selected nodes, and phasor currents at
selected lines for each harmonic frequency. Branch current measurements are not
used because they are either not accessible (e.g. windings of transformers in delta
connection) or they do not exist physically (e.g. branches in equwalent IT model of a
transmission line).

When real and reactive power measurements are used (instead of current
measurements) for branch flows and busbar injection, the measurement equation
becomes non-linear. In such a case, the solution must be obtained through an iterative
algorithm. This method is used for fundamental frequency state estimation as power
measurements are always available for revenue purposes. However, for harmonic
frequencies, current measurements are more readily available.

Furthermore, real and reactive power measurements are not used in the present
HSE for the following reasons [21]:

- Lack of a reliable method for P and Q meter error correction,

- Lack of uniformity in instrumentation for active and reactive power
measurements. For example, some utilities use three phase instrumentation
but the others do not, and

- Lack of a generally acceptable definition of reactive power in the presence
of waveform distortion,

For HSE, it is assumed that harmonic measurement equipment that can be
synchronized is available, The harmonics measured at certain locations can be nodal
voltages, nodal currents, or line harmonic currents. The measurement data are then
arranged in the measurements vector Z(h).

2.2.2.2 State Vector to be Estimated; X(%)

X(h) is a state vector to be estimated. It is a vector of voltage phasors at
all nodes for each harmonic frequency, ¥(#). Once these state variables (which are
independent of each other) are known; all the harmonic injection currents, branch
currents, line currents, and harmonic power flows can be calculated, given that the
network configuration and the primitive admittance matrix are known.
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Figure 2.6 The solution process of HSE.
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2.2.2.3 Measurement Noise (Uncertainty); E(4)

Generally, the value Z(h) is closed to the true value of the parameter
being measured, but differ by some unknown system measurement noise or error,
E(h), such as transducer errors and data communications problems. Gaussian noise
model provides an adequate description for the uncertainties presents [12],

2.2.2.4 Gain or Measurement Matrix; H(h)

H(h) is the gain or measurement matrix which is related to system
topological configuration, admittance matrix, and a placement of measurement points
for each harmonic frequency 4. The gain or measurement matrix can be considered as
the matrix whose elements relate the measurement vector to the state variable. If the
state variable to be estimated is the nodal voltage, then [12],

- For nodal voltage measurement, the relation to the nodal voltage is
V, (h) =TIV, (h) 2.9

where [ is identity matrix.

- For nodal current injection measurement (Iy), the relation to the nodal
voltage (Vy) and node-node admittance matrix (¥yy) is

1,(h) =¥, (R)V, (k) (2.10)

- For line current measurement (1), the relation to the nodal voltage and line-
node admittance matrix (¥;y) is

1,(h) =Y, (B)V,(h) @1

Since the measurement noises in equation (2.8) do not affect the solvability of
HSE, they are ignored in HSE algorithm [10]. In addition, the algorithm considers
only one harmonic order, then the variable of harmonic order % in the previous
equation will be neglected. The system node set N is partitioned into two subsets of

non-source buses (¥, I,,)and suspicious buses (Vy,,1,,), i.e.

v, !
Vy .—.[ ”] I, —_-[ ”"} (2.12)
VNs IH.\'

with I, =0
(2.13)

Then, equation (2.10) can be partitioned as follows:

[IMJ } = I:FNUN:) j}m".’.\'} [VNU ] (2 ] 1 4)
IN.V Y NsNo NsNs VN.\'
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From equations (2.13) and (2.14),
VNo = —mkfo?;\faNsVNs (215)

- From Z=HX, where Z, H and X are related to equation (2.9)-(2.11). When X
is Vy as in equation (2.12) and H is partitioned into two subset of suspicious and non-

source buses (H,,,H,,), it follows that:

'

z=[H,, HM,][E"’*} (2.16)

Substitute Vy, of equation (2.15) into equation (2.16), yields
Z= l:H Ns+ H A’O(—FA;(:NOYNONJ )] VNs (2' 17)

When Vy; are known, Vy, can be calculated from equation (2.15). Then all
state variables can be solved.

Generally, the problem of solving state estimation equation can be classified
as over-determined, completely determined or under-determined; depending on
whether the number of independent measurement equations are greater, equal, or less
than the number of state variables, respectively. A unique solution can only bz
obtained from the over or completely determined condition. [23]

In the under-determined case, a unique solution cannot be obtained unless
extra information is supplied. Two such pieces of information are defined as pseudo-
measurements and virtual measurements. Pseudo-measurements are estimated using
historical data. But considering the lack of harmoaic data, it is normally not viable for
HSE. Virtual measurements provide the kind of information that does not need
metering; for example, zero injection at a switching substation, The under-determined
HSE problem can be transformed into an over-determined problem wusing this
approach. This is achieved by reducing the number of unknown state variables to
include only the variables of known buses. [23]

2.2.3 Solving the Harmonic State Estimation
2.2.3.1 Normal Equation

In some applications, the normal equations of (2.8) that are
equivalent to Z=HX, are perfectly suitable for the linear least square (LS) problem.
The following expression X is obtained.

X=(H'H)'H z (2.18)

However, this equation is usually under-determined system because of
limitation of harmonic instruments. This results in (H’"H) being singular and a result

can not be obtained with normal equation approach. F urthermore, even in completely
or over-determined system, the normal equations may be very close to singular or ill-
conditioned. Although several methods have been suggested to solve such ill-
conditioned problem, observability analysis is still needed prior to estimation. Like
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SVD approach, another method that does not require observability analysis before
performing HSE is that of orthogonalization.

2.2.3.2 Singular Value Decompeosition (SVD)

There exists a very powerful set of techniques for dealing with the
sets of equations or matrices that are either singular or numerically very close to
singular. In many cases where Gaussian elimination and LU decomposition fail to
give satisfactory results, this set of techniques (known as SVD), can diagnose
precisely what the problem is. In some cases, SVD will not only diagnose the
problem, but also solve it, in the sense of giving a useful numerical answer. It is
known that the solution of LS problem obtained directly from the normal equations is
rather susceptible to round-off error. It turns out that SVD also fixes the round-off
problem, so it is a recommended technique for all. In the case of an over-determined
system, SVD produces a solution that is the best approximation in the LS sense. In the
case of an under-determined system, SVD produces a solution whose error are
smallest in the LS sense. [25]

In the over-determined or completely-determined case, the singularity from
the normal equations implies what is known as an unobservable system. In the case of
under-determined case, the singularity implies that there is no unique solution to the
problem. SVD, however, will provide a particular solution and a null space vector for
each singularity.

The SVD method represents and (MxN) matrix H of equation (2.2) as the
product of three matrices, i.e.

H=Uuwy’ (2.19)

where W is a diagonal matrix (NxN) with positive or zero elements, which are the
singular values of H. Matrices U and ¥ are orthogonal matrices, U is a column
orthogonal (MxN) matrix and F7 is the transpose of an (NxN) orthogonal matrix.
SVD constructs special orthonormal bases for the null-space and Range of a
matrix. Not only are they orthonormal but if H multiplies a column of ¥, a muItillqle of a
column of U is obtained. It can be shown that U is the eigenvector matrix of HH' and V
is the eigenvector matrix of H'H. Moreover, WW' is a diagonal matrix of eigenvalues,
The columns of U corresponding to the non-zero singular values are an orthonormal set
of basis vectors that span over the range of H. The columns of ¥ corresponding to the
zero singular values are an orthonormal set of basis vectors that span over the null
space. From equations (2.8) and (2.19) the following expression of X is obtained.

X=vw'v'z (2.20)

If some of the singular values (w) are zero or near zero, then a zero is placed in
the diagonal element of W' (instead of 1/w). This is equivalent to throwing away one
linear combination of the set of equations. The condition number of a matrix is the
ratio of the largest to smallest singular value. A singularity is considered near zero
when its value approaches or below the largest singular value times the machine’s
precision (e.g. 10™° for single precision and 102 for double precision) [23].



Although it is still not widely known, the SVD has a fairly long history. The
underlying matrix eigenvalue algorithms have been developed by Francis,
Rutishauser, and Wilkinson and are presented in Wilkinson’s book {1965). Golub and
his colleagues Kahan, Businger, and Reinsch (1971) did much of the fundamental
work. Recent books by Stewart (1973) and Lawson and Hanson (1974) discuss the
SVD as well as other related topics.

A new HSE algorithm, based on singular value decomposition (SVD) method,
has been presented in [3, 12]. It can give a solution even if the system under
consideration is partially observable. Again, SVD can diagnose precisely what the
problem is. In some cases, SVD will not only diagnose the problem, but also solve it,
in the sense of giving a useful numerical answer to HSE [25]. Instead of HSE, some
contributions [15-16, 26] discuss the issue of applying SVD to detect, locate, and
estimate remote harmonics in the presence of high noise contaminating from the
voltage or current waveform. In practice, the use of SVD can be significantly slower
than solving the normal equations and requires more storage. However, its great
advantage more than makes up for the speed disadvantage and it does not require the
- whole network system to be observable prior to estimation.

2.2.4 Observability Analysis [23]

Observability Analysis (CA) is required in HSE for identifying its
solvability. A power system is considered to be observable if the set of available
measurements is sufficient to calculate all the state variables of the system uniquely.
Observability is dependent on the number, locations, and types of available
measurements, network topology, as well as the system admittance matrix. For a
different network topology, or same network topology but different measurement
placements, an OA is to be performed in each case.

It is important for OA not only to decide whether the system is observable and
hence system-wide HSE can be performed, but also to provide information of the
observable/unobservable islands as well as redundant measurement points if the
system is not completely observable. This allows the re-positioning of measurement
points to maximize their usefulness.

A system is observable if a unique solution can be obtained for the given
measurements. A unique solution exits if and only if the rank of H is equals to the
number of unknown state variables. Therefore, to observable, the number of
measurements must not be less than the number of state variables to be estimated.
However, this condition is not sufficient because linear dependency may exist among
rows of the measurement matrix. The rank of H does not depend on the quality of the
measurements and therefore the noise vector can be assumed to be zero.

The existing OAs can be divided into three grouns; numerical (floating point
calculations), topological, and symbolic methods. C
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Numerical observability determination is based on assessing the rank of the
gain matrix by triangular factorisation. There are several algebraically equivalent
ways of expressing the state estimation equations that have good sparsity and
numerical stability for large systems. However, due to ill-conditioning and finite
precision arithmetic, numerical problems may occur. The factorisation method is
simple and uses some of the techniques of the HSE algorithm; however, it can be fail
because of numerical round-off errors. This results from performing floating point
calculations on the large sets of poorly conditioned equations. For example, matrix
elements, that should be zero, are not exactly zero. Therefore, a threshold needs to be
applied to those elements. The choice of threshold may not be obvious since it
depends on both the network and the precision of the arithmetic used.

This leads to the distinction between algebraic observability and numerlcal
observability. A power system is algebraically observable for a given set of
measurements if the rank of the gain matrix is equal to the number of state variables
to be estimated. A power system is numerically observable if the measurement model
can be solved for the state variables. If a system is numerically observable, then it
must also be algebraically observable. However, the converse needs not hold. It is
possible for the gain matrix to have the required rank. But it may be ill-conditioned so
that cannot be solved numerically. However, for most power systems, algebraic
observability would imply numerical observability.

Floating point determination of rank is time-consuming and does not give
information on where the problems are.

As the name indicates, the topological approach informs whether a system is
topologically observable. Although it is possible for a topologically observable
system to be algebraically unobservable, it is unlikely to occur in a practical system as
it only happens with a theoretical choice of network admittances. This condition is
called parametrlcally unobservable,

The system is topologlcally observable if there exists a spanning tree of full
rank. In this respect, a tree is any interconnected, loop-free collection of branches of
the network and a spanning tree is a tree that is incident to every busbar. The number
of possible trees for NV busbars is N%, which is very large figure even for a small
system. To start with, the branches vnth flow measurements are used to build a tree.
All the loops are eliminated, as the flow through any branch (that forms a loop) can be
calculated from Kirchoff's voltage law, circuit parameters, and flows in other
branches. Hence, such measurements are redundant and do not contribute to the rank
of the gain matrix. This leaves several connected pieces or trees, and the resulting
unconnected loop-free sub-graph is termed a forest. Then busbar injection information
is used. However, the topological method and requires procedures that are not needed
to compute the state estimation is combinatorial. Thus a computational effort is
considerable.

The symbolic method seeks to overcome the numerical problems associated
with floating point operations by replacing them with symbolic calculations, where
each entry in the measurement matrix used for OA is either 1 or 0. While being
extremely fast and simple, the basic method is not capable of finding all the
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observable islands and redundant measurements. A second phase has been added to
the symbolic method to overcome these deficiencies as well as retain its simplicity
and speed.

Unobservable subsystems can be categorized based on the number of
additional measurements needed to make them observable. For example, a subsystem
is referred to as univariate conditionally-observable if the set of equations is one less
than the number of state variables linked, as a one more measurement will make the
subsystem observable. Two observable subsystems can be combined to form the
observable system even though they do not interconnect (have no state variables in
common). However two univariate conditionally-observable subsystems can only be
combined to form a larger univariate conditionally-observable subsystem if they have
at least one state variable in common. There are thus two process-phases, the first one
is searching for the overall observable system and the second one is searching for
univariate conditionally-observable subsystems. For a subsystem to be observable, at
least one state variable must be known (measured) and it is used as the reference
busbar,

2.2.5 Load and Harmonic Source Identification

The harmonic simulation and HSE algorithms are different by means of
load treatment. In general, a load bus may contain linear (passive) and non-linear
components. These can be modeled in harmonic simulation, which represents the
current injections and the passive components separately. HSE, on the
other hand, may have no information of the composition of the load and is only
capable of estimating the net current flow into or out of the load busbar. [23]

Therefore, the current-injection information supplied to the HSE algorithm is
the sum of the harmonic current source and harmonic current flowing in the load. In
theory, it should be possible to derive some information on the nature of the load from
the estimated harmonic voltages and injected currents at the bus.

The harmonic voltages at the suspicious buses and the harmonic currents
injected from the suspicious sources to the backbone are provided by the estimator at
the end of HSE. Each suspicious source is classified as a harmonic injector or a
harmonic absorber.

A suspicious harmonic source can be considered as a Norton equivalent circuit
at each harmonic frequency as shown in Figure 2.7. The following relationship
applies for a harmonic of order : :

£, (h)-1,(ny =7, ()Y, (1) @2y

In equation (2.21), Vi(h) and (k) are the nodal voltage and current injection,
respectively, as provided by the estimator, while f(#) and Yi(%) are the unknown
Norton harmonic current injection and admittance within the suspicious source
(=1, 2, 3). The following two assumptions are made for the suspicious source:
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Figure 2.7 Norton equivalent circuit for suspicious harmonic sources [23].

Y,(h)=G, - jB/h (2.22)

'1,. (h)i =5, ()T (%)

where G; and B; are unknown parameters for node i, s is a chosen reference harmonic
(e.g. the 11" harmonic for the cases of 6-pulse and 12-pulse converters), and §(#, ho)
is a chosen ratio of |/, {(h) | to lf (ho)l As a result, for any two harmonics A, and A,
which are not %, the set of quadratic equations (equations (2.21) - (2.23)) is solvable
to obtain the unknown Norton parameters f(4) and Y{(4) for each harmonic 4 of
interest, ' _ :
By sensitivity analysis, it can be shown that the estimated Norton parameters
using the above method are very dependent of to the chosen ratio when the suspicious
source contains non-zero Norton current injections, and very independent of the
chosen ratio when the suspicious source does not contain Norton current injections.
Therefore, the above method can at least be used to identify whether a suspicious
source is a purely passive load and, in such a case, estimate the equivalent harmonic
admittances of the passive load.

The way for harmonic type identification is presented in [6], by comparing the
spectrum of harmonic current from HSE with idealized six-pulse or twelve-pulse
converter as shown in Figure 2.8 and 2.9, respectively. Idealized data do not effect
attenuation in harmonic signal strength due to the network frequency response.
Similarly, idealized data do not include commutation characteristics which cause
attenuation in high frequency components due to the rounding of the current waves,
Stratford (1980) has empirically quantified such phenomena and his guideline
attenuation characteristics are sometimes called Stratford’s numbers. Note that the
difference between the idealized and estimated always happen. Then, the work
presented in [6] can be used for harmonic type identification of six-pulse or twelve-
pulse converter.

(2.23)
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Figure 2.8 Spectrum of harmonic current for an idealized six-pulse converter [6].
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Figure 2.9 Spectrum of harmonic current for an idealized twelve-pulse converter [6].
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2.3 Bad Data Analysis

Bad-data can result from erroneous measurement values, incorrect system
parameters, or incorrect network topology. At transducer may have been wired
incorrectly or the transducer itself may be malfunctioning so that it simply no longer
gives accurate readings. Erroneous measurement has been the main focus of bad-data
analysis. This can be categorised into three groups: extreme errors, gross errors and
normal measurement noise. The presence of bad data degrades the accuracy of the
HSE results and the problem is overcome by detection, identification, and removal of
the bad-data, or the use of more robust estimator replacing the weighted least squares.
(23]

Although a great deal of work has been done on bad-data analysis for
fundamental frequency, in particular detecting its presence, identifying which
measurements are bad, and eliminating the influence of the bad-data. But this usually
requires the system to be over-determined and is therefore of limited applicability to

HSE. However, in the presence of bad data, the residual r = Z, ~ H, (xm) should be

large. Where r; is a residual value, Z; is a measurement value, H; is a measurement
matrix of Z, and x, is an estimated value from HSE. A statistical hypothesis test can
thus be applied on the residual values (weighted or normalized version of residual) to
identify the presence of bad data. [23]

In any state estimator, the redundancy in a measurement system is very
important for three reasons. The first reason is the requirement of accurate state and,
consequently, output variable estimates. The second is the ability to detect and
identify bad data. The third reason is the ability to correct for parameter inaccuracies.

The main reasons for having redundant measurement information is to provide
the capability to identify and locate bad data con31st1ng of gross and/or large modeling
errors. Most methods of bad data processing in power system state estimation can
reliably identify single and multiple non-interacting bad data. However, the rest can
provide a reliable identification in the presence of multiple interacting bad data.
Comparatively, the two leading approaches appear to be a combinatorial optimisation
identification (COI) method and a hypothesis testing identification (HTI) method have
been proposed. Slutsker (1989) proposed a method that attempts to utilize the best
features of COI and HTI and compensate for their weaknesses. It combines the COI
and the largest normalized residual (LNR) methods for reliable selection of bad data
through a sequential removal of measurements with the largest absolute normalized
residuals with the HTI method’s ability to obtain and statistically analyze the estimate
of measurement errors. [19]

WLAV techniques applied to static state estimators is presented in [27].
Simultaneous detection and rejection of bad data are shown to be one of the features
of the proposed estimator. Automatic rejection of bad data is a direct consequence of
the interpolation property of the WLAV technique. This automatic rejection is
conditioned by the availability of an adequate set of local redundant measurements
near the point where bad data measurements were located. Several statistical theory
required to analyze, detect, and identity bad measurement for state estimation of a
power system are described in [28].



