CHAPTER 3

Fuzzy Rules Emulated Network

In this chapter, the simple structure and computation network called Fuzzy Rules
- Emulated Network (FREN), which can emulate a set of fuzzy IF-THEN rules, is
proposed. The network structure of FREN is explained firstly. Then the rela-
tionship with the Mamdari fuzzy inference system and the radial basis function
network are given. Finally, the parameter adaptation method for both linear and
nonlinear parameters is derived and the learning rate selection criteria is discussed.

3.1 Structure of Fuzzy Rules Emulated Network

For a single input single output system, A general fuzzy inference system can be
represented by the IF-THEN as,

RULE i: IF I 1s A; THEN B; = fi(pa,)

where I denotes the input variable of this fuzzy system. This rule indicates that if
I is the crisp value which belongs to the fuzzy set A; with the membership value
of p14, then the fuzzy value of the output of this rule, denoted by B;, is equal to
fi{era,). After all rules have been processed, the crisp output O is calculated using
some defuzzification schemes.

Figure 3.1: Structure of FREN

FREN is derived based on these fuzzy rules, its structure can be decomposed
into 4 layers as shown in Fig.3.1. The function of each layer is as follows:
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Layer 1: The input I of this layer is sent to each node in the next layer directly.
Thus there is no computation in this layer.

Layer 2: This is called the input membership function (MF) layer. Each node
in this layer contains a membership function corresponding to one linguis-
tic level (e.g. negative, nearly zero, etc.). The output at the i-th node is
calculated by

A; = pa,(I), (3.1)
where pi4,(-) denotes a membership function of a fuzzy set A at i-th node
(i=1,2,...,N). Examples of membership functions are given in Fig.3.2.

Layer 3. This layer may be considered as defuzzification step. It is called the
Linear Consequence (LC) layer. There are also N nodes in this layer. The
ontput at the ¢-th node in this layer can be calculated by

B; = (h,' — ki)A,' + Kk, (3.2)

where h; and k; are parameters of +~th node. Examples of linear consequence
are shown in Fig. 3.3.

Layer 4: The structure of this layer is similar to the output layer of an artificial
neural nciwork. The output of the FREN, O, is calculated in this layer ac

N
0= B (3.3)

=1

From Eqs. (3.1) and (3.2), Eq. (3.3) can be rewritten as

N
0 =) (hi— k)pa(D) + k. (3.4)

i=1

If there is no bias then k; = 0 and Eq.(3.4) becomes

N
0= Z hipa,(I). (3.5)
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Figure 3.3: Example of linear consequence (LC)

This decomposition into 4 layers enables the designer to intutively set the
initial value of FREN’s parameters. As an example, consider the following 4 fuzzy
rules of the input and the output relations,

RuLe 1 1IF Ii1s PL THEN O 1s PL

RurLe 2 Ir I 1s PM THEN O 1s PM
RuLe 3 IrFr 7l i1s NM Tren O 1s NM
RurLe 4 Ir I 1s NL THEN O 1s NL,

here PL, PM, NM and NL denote positive large, positive medium, negative medium
and negative large linguistic level, respectively.

Assume that the input signal I € [—1,1] and the output signal O &
[-10,10]. The value of the output signal, O, is controlled by LC parameters
(e.g. h; and k; for i = 1,2,3,4.) In this example, A, is set to the maximum value
(h1 = 10) and A4 is set to the minimum value (k4 = —10). Other parameters are
ho=h/2=05, h3 = hy/2 = ~5, and k; = 0 for i = 1,2,3,4. Then, MF parame-
ters are selected to cover the input range. The initial setting of all parameters can
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Figure 3.4: Example of FREN parameters setting.

be given as:

RULE 1:

RULE 2:

RuLE 3:

RULE 4:

A= Nﬁu(I) =

7 —0.25]°

Az = pgg(I) = exp (-“

Ay = P‘A4(1) =

1

1+ exp [—20(1 — 0.35)]

[T +0.257]2
0.15

1

1 + exp [20(Z + 0.35)]

~10
—1 (4] 1
Input
;Bl = 10A1:
; By = 54,
;B3 = _5A37
;B4 = —10A4.

The results of this setting is shown in Fig. 3.4. Note that these parameters

are further adjusted using an on-line adaptive algorithm to fine tune the system

performance.

3.2 Fren, RBF and Mamdani Fuzzy Logic

In this section, it will be shown that FREN is equivalent to the Radial Basis
Function (RBF) network and the Mamdani fuzzy logic {28].
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3.2.1 RBF

The structure of an RBF network with single input, single output and m nodes in
its hidden layer is shown in Fig. 3.5. The network output, Oy, is obtained from

0r =3 cunt), (26)

where I denotes the input signal, u; and o; are the radial basis function and the
weight parameter of i-th node, respectively. Consider Eq.(3.6) and Eq.(3.5), if all
membership functions of FREN are selected as radial basis functions, m = N and
o; = h; then the output of FREN in Eq.(3.5) is equal to O,.

50,

Figure 3.5: Radial basis function network structure.

3.2.2 Mamdani Fuzzy Logic

Consider the Mamdani fuzzy logic system [28] with single input, single output and
m fuzzy control rules. Each rule is given by:
Rule i: IF I 18 A; THEN Oy; 18 B;
for i =1,2,3,...,m and B; and Oy; denote the output arnd a singleton value of
the i-th rule, respectively.
The system output Oy obtained using a discrete center of area defuzzifica-
tion method can be written as

Z?;l Bi:uA.' (I )

O, =231 ’ 3.7

A &0
Let 377, pa,(I) =1 then we obtain

Op=)_ Bipal). (38)

i=1

Consider Eq.(3.8) and Eq.(3.5) , if m = N and B; = h; then Oy is equal to the
output of FREN in Eq. (3.5).
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Thus the FREN, the RBF network, and the Mamdani fuzzy logic can, in
principle, give the same performa.ncés. However, the initial setting of RBF is
normally defined as a random small value set [4,28], while the Mamdani fuzzy
inference needs the more precise parameter values since it lacks the self adaptation.
As shown earlier, for FREN, the initial setting of MF can be selected to cover the
range of input variable and LC parameters can be roughly estimated from the
range of the output variable together with expert’s knowledge.

3.3 Parameter Adaptation

The adaptation of FREN parameters is presented in this section. Since the initial
setting of FREN parameters are just rough estimation based on a human expert
experience. It is necessary to fine tune these values in order to cope with environ-
mental change and also to improve the system performance.

3.3.1 Adaptation Based on Steeptest Descent Algorithm

In this work, an adaptive techrique based on the steepest descent technique is
proposed to adjust all parameters, i.e., the shapes of membership functions and
linear consequences, during the system operation. Firstly, we define the objective

function as ! y
6k) = 5 (k) —o(k)), (39)

where £(k) and o(k) are the target and the F'REN’s output signal at time k respec-
tively. It is desired to adjust all FREN’s parameters, i.e., MF and LC parameters,
to minimize this objective function. Here, the value of parameter P, is updated at
each time step by

%3
new __ p. P 2
Pi "“R"‘AR R 7?:613‘_: (310)
where 7 is called the learning rate of i-th parameter. The term 9¢/8PF, is calculated
from o ot 9
0
5= 5o 3T (3.11)

and

¢

=2 = ~[i(k) — o(k)] = —E(k). (3.12)

Finally, Eq (3.10) becomes

PPV = P, + n,-E(k)%. (3.13)
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3.3.2 Learning Rate Selection

The difficulty of adaptive method based on the steepest descent technigue is how
to select an appropriate value of the learning rate. Too large value of the learning
rate may cause the objective function oscillates around its global minimum whereas
too small value reduces the learning performance. In this subsection, we discuss
how to select an appropriate learning rate based on Lyapunov’s stability condition.
Note that a similar approach has been suggested in [20].

Consider the following Lyapunov function

. 2
Vk) = -;-(t(k) - o(k)) d %Ez(k). (3.14)
The change of Lyapunov function is given by
AV(kK) = V(k+1)~V(k)

= % (Ez(k +1) - E?(k))

AE(K) (E(k) + %AE(I;)), (3.15)

where AE(k) = E(k+ 1) — E(k) is the change of error. This can be approximated
by
_AE(k) , , . OE(k)
AE(K) = =3 AP~ S0 AR, (3.16)
for small AF;.

The term 0E(k)/OF; can be calculated by
O0E(k) OE(k) 8o o

P, 8o 8P, 8P’ (8.17)
since OE(k)/0o = —1.
Using AF; from Eq.(3.13), Eq. (3.16) can be rewritten as
AE(E) = —n:E(K) (3‘1 ’ (3.18)
- n‘ a,P" b %
and the change of the Lyapunov function can then be written as
80\ [ 1 (80\?]
AV (k) = —m (E(k)BP,-) {1 L (5_}’;) } (3.19)
According to the stability condition, AV (k) must be less than zero, this yields

do

-2
0<ny <2 ('a—ﬁ) . (320)
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'The learning rate 7; should lie in the range indicated by the above relation in order
to g'ua.rantée system stability. '

Note that for the direct control system, in this work, the output of FREN
must be the control effort of the plant. Unfortunately, the perfect control effort,
as the target of FREN, is not known in advance because of the system uncertainty,
the nonlinear parameter drift, the disturbance effect and so on. This problem will
be discussed and solved in the next chapter.



