CHAPTER 5

Sliding Mode Control and FREN

From many computer experiments, it is found that the control system using two
FRENs with parallel structure shown in the previous chapter sometimes becomes
unstable. Since during the system operation, the plant information Y, can become
large when Au(k) is nearly zero. In this chapter, the direct adaptive controller
based on the combination between FREN and the Sliding Mode Control (SMC) is
proposed. The SMC is applied to estimate the upper and the lower bounds of the
control signal to guarantee the system’s stability. Within these bounds, the FREN
controller generates a suitable control signal according to the given fuzzy control
rules.

5.1 Estimation of Control Effort’s Bounds

It is rather difficult to ensure the stability of FNN based adaptive control system
because of its nonlinearity. In this work, the system stability condition is enforced
by limiting the control signal to some pre-determined bounds. This stable control
effort range is determined by using the modified SMC in the discrete-time domain.

Consider the general N-th order nonlinear discrete-time plant which can be

written as
[z (k+1) ] 0 1 0 ol [ zk) ] [ o0 ]
za(k + 1) 00 1 0| | =za(k) 0
5 <X : N I M R
zn_1(k+1) 00 - 1{ |zn_alk) 0
| zn(k+1) | 0 0 0 -+ 0] | zn(k) | g(z(k)) ]
0 1 [0
0 0
sol IR I A (5.1)
0 0
| fx(k))]  [d(k)]

or more compactly as

z(k+1) = Az(k) + Byu(k) + Fx + Dy, (5.2)
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here f : RV — R and ¢ : R — R are nonlinear functions. It is assumed that
x(k) is finite for all £.
Define the sliding surface s(k) as

s(k) = c[x(k) - wd(k)] = ce(k), (5.3)

where @4(k) be the desired value of @ at time k and ¢ = [¢; -+ cy] is a constant
matrix. Note that ¢ must not be orthogonal to e. The selection of ¢ is discussed
in appendix A.1. Then s(k + 1) is

s(k + 1) = cAz(k) + cBiul{k) + cFi + ¢Dy — czq(k + 1), (5.4)

or .
s(k+1) = c,z(k) + engru(k) + enge — cxa(k + 1), (5.5)
where ¢, = [0 ¢ ... en-1], e = g(x(k)), and g = f(z(k)) + d(k). Define the

Lyapunov function
V (k) = s*(k), (5.6)

and

AV(k) = V(k+1)-V(k)
= %k +1) — (k). (5.7)

For stability we must have AV (k) < 0 which implies
[s(k 1)+ s(k)] [s(k +1)— s(k)] <. (5.8)
Assume that |gi| < @, ey > 0 and g > 0. Define
A =czqlk+1) — cea(k). (5.9)
Then consider the condition (5.8) in the following four cases.
Case I s(k +1)+s(k) > 0and s(k+1) — s{k) <0
We obtain

—A + engru(k) + engr + s(k) > 0, (5.10)
—A +engru(k) +ovagr — s(k) < 0. (5.11)

These inequalities lead to
—engx + (k)

A-cnge—slk) oy <A . (5.12)
CN Gk CN Gk
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Define
A
up(k) = +en® ot s(k) (5.13)
CN Gk
s A—conae+s(k) (5.14)
CNGE
wnlh) = 2% sb) (5.15)
CNGk
< Azonae—stk) (5.16)
CNGk
Then we may conclude that
win{k) < u(k) < usp(k). (5.17)
It is required that u,,(k) < uy,(k) which implies s(k) > Zen®,.
Case II: s{(k+1) +s(k) <0 and s(k+1) — s(k) >0
We obtain
—A + engru(k) + ey g +s(k) < 0, (5.18)
—A +engru(k) +enge —s(k) > 0, (5.19)
which leads to
A—onget slk) gy o A onge = s (5.20)
NGk CNGk
Define
A+ en®, - sk
uplh) = AFo2e o
Nk
S A — enqr — s(k)
CNGk ’
A—cn®
’Uzn(k) _ \—cwn q+3(k)
CN Gk
. A—cnge + S(k)
CNGk '
Again we may conclude that
ugn{k) < u(k) < ugp(k), (5.21)

provide that uas, (k) < ug,(k) which implies that s(k) < cny®q.

Case III: s(k+ 1)+ s(k) =0
We obtain

~A +cngru(k) + enge +s(k) = 0, (5.22)
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thus

u(k) = 2w as — s(k) (5.23)
Cn Gk

From Eq.(5.23) we obtain

A—cn® —s(k) _ A—cnge—s(k) _ A+on® — s(k)
CN Gk CNGE CNGk

b

or
Uip < U(k) < Ugp. (524)

It is required that us,(k) > u1,(k) which gives cy®, > 0. This condition is always
hold from the property of ¢y and @,.

Case IV: s(k+1) —s(k) =0

We obtain
—A 4+ cNgku(k) +cnqQr — S(k) = 0, (525)
thus A L
u(k) = 2N s(k) (5.26)
CNOk

Again from Eq.(5.2€), we obtain

A — en®, + s(k) < A —enge + s(k) < A+ cen®g + sk)
CN Gk CNGk CN Gk y

or
Uy, < u(k) < Uyp. (6.27)
It is required that wui,(k) > uy,(k) which implies-cy®, > 0. This condition is
always hold from the property of cxy and @,.
Finally, the four conditions are summarized in Table 5.1. In this work,
the control effort obtained from FREN controller is kept within the boundary
obtained from SMC. This combination yields satisfactory results as shown in the

next section.

5.2 FREN with SMC Controller

When using the proposed FREN as a controller, the structure of the control system
becomes as shown in Fig. 5.1. The FREN receives the error signal E(k) and
computes the control signal u(k). The plant control signal u(k) is obtained from

u(k) = O(k), (5.28)
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Table 5.1: Stable bound of control effort obtained from SMC.

Case | Bound of Control Effort | Sliding Surface Condition
I U < u(k) < up, s(k) > —cn®,
II Ugn < u(k) < ugp s(k) < en®q
I U1n < u(k) < ugp -
IV Uy < ul(k) < Uy, -
R /. T L. ,,
| —_————— H
1 [ t
H h 4 |
H ER) u(#) ! x(k+1)

(kD) _ g ot Em FREN |  Plant ity

) ey —LI__‘_> : 0]
i Uppor & Lower
SE_Jwt _vowea

Figure 5.1: Control system using FREN and SMC

where O(k) is the output of FREN in Eq.(3.3).
As an example of how the initial value of FREN’s parameters are selected,
consider the following 4 fuzzy control rules,

Rure 1 IF F1s PL THEN u IS PL

RuLE 2 IF E 1s PM THEN u 1S PM
RuLE 3 IF E 1s NM THEN u 1S NM
RurLg 4 IF E1s NL THEN % 1s NL.

Assume that the error signal E € [—1,1] and the calculated lower and
upper bound of the control effort obtained from SMC are -2 and 2, respectively,
ie. up € [—2,2]. The value of the control effort, ui can be set by pérameters in
LC (e.g. h; and k; for i = 1,2,3,4.) In this example, h; is set to the upper bound
(hy = 2) and h, is set to the lower bound (hs4 = —2). The other parameters are
ho = "—‘21 =1,h3 = %‘l = —~1, and k; = 0 for 7 = 1,2,3,4. Then, MF parameters are
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selected to cover the error range. The initial setting of all parameters are given as:

1

Rule 1: Ay = m(E) = 4o T20(E = 0.35)]

;Bl =2A1:

' 2
Rule 2: Ay = up(E) = exp (— [E—_—M?] ) : By = Aj,

0.15

0.15

2
Rule 3: A3z = u3(E) =exp (— [m] ) : By = — A,

Rule 4 : = mw(E) = ; By = —2A4.
wle 42 Av=wm(E) = T om0 4
The results of this setting are shown in Fig. 5.2.
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Figure 5.2: FREN parameters setting

5.3 Computer Simulation Examples

1 0 0.5 1 -1 (4] 1

Input [Error]

The performance of the proposed controller are tested by controlling some nonlin-

ear plants. Some examples are presented in this section.

5.3.1 Robotic Control

The characteristic of the nonlinear discrete-time robotic plant

(50] is

y(k+1) = (2T——1)y(1’c—1)-+—2(1——T);gr(lc)+10T2 sin(y(k—1)) +u(k)+d(k), (5.29)
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or in state equations form as

T (k+1) _[0 1] [xl(k)] [ 0 ] [0] [0] 5 30

[Iz(k +1)| 7 [0 0] |=a(k) + flz(k)) + u{k) + d(k)|’ (5.30)
where zo(k) = y(k), z:(k) = y(k — 1), u(k) is the control signal, T" is the sampling
interval and equals to 0.01 second, d(k) is the external disturbance and

f(x(k)) = (2T — 1)z, (k) + 2(1 — T)za(k) + 10T sin(z(K)).

The reference signal yq is set as

yalk+1) = 7 sin (ZAT). (5.31)
Then x4 can be written as
W(k+1)] _w in (ZkT
za(k+1) = [ﬁL(k + 1)] 2 [sins(lg ((k + 1))T)] ' (5:32)

The external disturbance is assumed to be
- d(k) = @4, (6.33)

where &, = 0.6 and I is a uniformly distributed random number in [-1,1].
Let %maz be the maximum value of y(k), then from the uncontrolled system
response of Eq.(5.29) it is found that

Ymaz ~ 1.8, (534)

where d(k) = 0. ¢ in Eq.(5.3) is defined as ¢ = [1 2].
Denote the error £ = y; — y and the fuzzy control rules are given by,

RuLe 1 Ir E 1s PLL THEN u 1s PL

RULE 2 Ir £ 1s PM THEN u 1S PM
RuLe 3 Ir E1s NM THEN u 1Is NM
RuiLe 4 Ir E1s NL THEN u I1s NL,

In this simulation, the initial setting of membership functions and linear
consequences of FREN are selected as shown in Fig. 5.3(a). After on-line learning,
the final MF and LC of FREN become as shown in Fig. 5.3(b).

The initial output signal y(k), the control effort u(k), the output state
error e(k) = za(k) — z42(k) and the disturbance d(k) are shown in Fig. 5.4(a)-(d),
respectively. The on-line learning is applied around 1,000 epochs and the final
results are obtained as shown in Fig. 5.5.
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Figure 5.4: Initial simulation results of robotic control.
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Figure 5.5: Final simulation results of robotic control.
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5.3.2 Chaotic System‘ Control
5.3.2.1 Herion Map
The characteristic of the controlled nonlinear discrete-time Hénon map [12,21] is
y(k+1) = A+ u(k) — ¥*(k) + By(k — 1), (5.35)
where A = 1.29, B = 0.3. In state equation form, Eq.{(5.35) becomes
2610 = [0 of (5] + Lrcaten] + lootun] w0 530
where z2(k) = y(k), z1(k) = y(k — 1), u(k) is the control signal, g(x(k)) =1 and
f(=(k)) = A — z3(k) + Bz (k). (5.37)

Let ¢ = {1 2]. The chaotic state trajectory without the control effort
(u(k) = 0) is shown in Fig 5.6.

-1}

Figure 5.6: State trajectory of Hénon map.

The fixed point 35 is set to 0.838486. Then x; can be written as
za (k + 1):1 YF
E4+1)= = X 5.38
zul ) [ﬂia(k +1) Yr (5-38)
Denoting the error E = yr — y, the fuzzy control rules are given by,

RuLe 1l IrF E 1s PL THEN u IS PL

RuLE 2 IrF F 1s PM THEN % 1s PM
RuLE 3 IF E 1s NM THEN ¢« 1Is NM
RULE 4 IF E 1s NL THEN % 1s NL.
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In this simulation, the controller starts to generate control effort at & = 200
and stops at k = 800. The initial setting of membership functions and linear
consequences of FREN are selected as shown in Fig. 5.7(a). After on-line learning,
the final MF and LC of FREN are shown in Fig. 5.7(b).

The initial output signal y(k), control effort u(k) and output state error
e(k) = z2(k) — za2(k) are presented in Fig. 5.8(a)-(c), respectively. After that,
the on-line learning is applied around 2000 epochs. The final results are shown in

Fig. 5.9.
Next, the desired strategy is changed to
o sin(0.01%k)
alk+1) =3 [sin(0-0lf_"—s(k +1)] (5.39)

The results are obtained as showr in Fig. 5.10. The relation between the
control effort and its bounds can be noticed.

In order to investigate the effect of SMC bounds on the system’s stability,
another computer experiment is performed. In this test the control effort is allowed
to lie outside the stability bounds at & = 400 to k = 450. During these time
steps, as can be noticed in Fig.5.11, the output y(k) cannot follow the desired
trajectory. When the contro) effort is forced to be within the sliding bounds again
after k = 450, the good tracking performance is obtained.
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Figure 5.9: Final simulation results of Hénon map control.
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(¢} Error e(k).

Figure 5.10: Simulation results of Hénon map control when x4 is sine waveform.
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Figure 5.11: Simulation results of Hénon map control when x4 is sine waveform
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5.3.2.2 Logistic Map

Here the proposed controller is used to control the logistic map [18,62] whose
nonlinear discrete-time equation is given by

vk +1) = (p+uh) ) u (1-3(8)), (5.40)
where p = 3.79. This can be rewritten as
$1(k+1) _ 01 :Cl(k) 0 0 u
| R | R P PO B e O D
where z3(k) = y(k), z1(k) = y(k — 1), u(k) is the control signal,
g(x(k)) = z2(k) — T3(K), (5.42)

and

f(z(k)) = pza(k)[1 — zo(K)]. (5.43)
And ¢ = [1 2] which is the same as used in the previous example. The chaotic
state trajectory is shown in Fig 5.12.
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Figure 5.12: State trajectory of logistic map.

The fixed point yr of &4 in (5.38) is set to 0.736148. Denote the error
E = yr — y, the fuzzy control rules are given by,

RULE 1 Ir F 1s PL THEN u 1S PL

RULE 2 Ir E 1s PM THEN u Is PM
RULE3 IF E 1s NM THEN u 1s NM
RuLE 4 Ir E 1s NL THEN u 1s NL,
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Table 5.2: Compariscn of Logistic map control. |

I Control algorithm SSE | Training (epoch) | Adjustable parameters

OGY [14] method 1.139 - -

Neural Network [1:4:1] Fail 5,000 13
Neural Network [1:50:1] | 1.025 2,000 151
RBF[1:4:1] Fail 5,000 16
RBF[1:50:1] 0.8196 2,000 200
ANFIS[1:20:1] 0.2473 2,000 80
ANFIS[1:4:1] 0.5127 2,000 16
FREN [1:4:1] 0.2344 2,000 16

800 :
Note that SSE = E e%(k), and [X:Y:Z] denote the number of nodes in the input,

k=201
the hidden and the output layer respectively.

The initial setting of membership functions and linear consequences of
FREN are selected as shown in Fig. 5.13(a). After on-line learning, the final
MF and LC of FREN become as shown in Fig. 5.13(b).

The initial output signal y(k), control effort u(k) and output state error
e(k) = z2(k) — Ta2(k) are represented in Fig. 5.14(a)-(c), respectively. After that,
the on-line learning is applied around 2000 epochs. The final result is shown in Fig.
5.15. Controlling of the logistic map by using other techniques are also performed
and the results are summarized in Table 5.2.

It is found that using the neural network and the RBF with 4 hidden nodes
cannot drive the system to reach the desired trajectory. The results obtained from
FREN[1:4:1] and ANFIS{1:20:1] are similar. However, the number of adjustable
parameters of ANFIS is around 5 times of FREN's.
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(b) Final setting.

Figure 5.13: MF and LC for logistic map control.
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(c) Error e(k).

Figure 5.14: Initial simulation results of logistic map control.
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Figure 5.15: Final simulation results of logistic map control.
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5.3.3 Chaotic Synchronization

In this example, the FREN are applied to the 3-dimensional Hénon map synchro-
nization [36,40,59] application. The characteristic of the 3-dimensional discrete-

time Hénon map is

:L'ld(k + 1) = —b$3d(k)
Toa(k +1) = zi9(k) + bzq(k)
zaa(k +1) = 1+ Lo9(k) — az3y(k). (5.44)

The response system is given by,

z1(k+1) = —bz;(k)
zo(k+1) = =z:(k) + bzs(k)

o3k +1) = F(z(k))+ulk), (5.45)

z;(k+1) 0 0 =b] [z:(k) 0 0
I:a:g(k+1)] = [1 0 b] |::z:2(k):| + [ 0 ] + [ 0 ] , (5.46)
z3{k +1) 0 0 0] |zs(k) F(z(k))| |u(k)

where @ = 1.07, b = 0.3, F(:e(k)) = 1 + z2(k) — az}(k) and u(k) is the control
signal.

In this simulation, initial conditions are chosen as e = [1 1 1], z4(0) =
{0.19 0.06 0.77]" and 2(0) = [-0.22 0.30 —0.75]". The chaotic attractor of
x4 is shown in Fig. 5.3.3.

Denoting the error for input to FREN as E = sign(e;)|jzqs — x|, the fuzzy
control rules are given by,

RuLe 1 IF E 1s PLL THEN u 1s PL

Ruie 2 Ir F 1s PM THEN u 1s PM
Rure 3 Ir E 18 NM THEN u 1s NM
RULE 4 Ir E 1s NL THEN u 1s NL.

The initial setting of membership functions and linear consequences of FREN are
selected as shown in Fig. 5.17(a). After on-line learning, the final MF and LC of
FREN become as shown in Fig. 5.17(b).

The trajectory of the drive system x4 and the response system x before and
after learning phase are shown in Fig. 5.18 (a) and (b), respectively. The control
effort and state parameters after learning phase are illustrated in Fig. 5.19.

The tests are performed by using RBFN and ANFIS and the results are
summarized in Table 5.3.
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Table 5.3: Comparisons of chaotic synchronization control algorithms.

Control algorithm | SSE;, | SSE, | Training (epoches)
RBF[1:4:1] Fail - 5,000
RBF[1:50:1] 0.9274 - 2,000
ANFIS[1:20:1] 0.4017 | 2.9436 2,000
ANFIS[1:4:1] 0.8951 | 4.6837 2,000
FREN [1:4:1) 0.4162 | 2.0741 2,000

SSE; = 32, 7% (€?(k), and SSE; = 3o, Soi, e?(k). Notice that SSE; in-
cludes the tracking error during the transient duration (k = 1,2, 3,4).

x -1 -05

Figure 5.16: Generalized Hénon map.

It is found that RRF with 4 hidden nodes cannot make the response system
synchronize with the drive system. The result from ANFIS with 20 hidden nodes
is slightly better than FREN but the numbers of adjustable parameters and hidden
nodes are around five times of FREN[1:4:1].
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