CHAPTER 6

Multi Input FREN

Since FREN has only one input signal, in some control applications, one must use
the pararell structure to handle multiple inputs. The drawback of this parallel
structure is that the fuzzy inference cannot be completely emulated. In this chap-
ter, a modification of FREN to handle multiple inputs called MIFREN is presented.

6.1 Structure of MIFREN

For a fuzzy inference system with n inputs and each input has r fuzzy states, thus
the number of rules is *. Each fuzzy IF-THEN rules can be represented by

RuULE k:
IF (I is Ag,) and (J2 is Ag,) ... and (I, is Ar.)
THEN O, = B;

where I; denote the j-th input variable. A; denotes the i-th fuzzy set, since there
are r possible fuzzy sets, then k; € {1,2,...,7}. The k-th rule is related to the
index {k;}*, via k = 1+ Y, (ki — 1)r*, thus & € {1,2,...,7"}. And Oy is
the fuzzy output of this rule which belongs to the fuzzy set Bj. After all rules
have been processed, the crisp output O is obtained from {Ox};-, using some
defuzzification schemes.

MIFREN is derived based on these fuzzy rules, its structure can be decom-
posed into 5 layers as shown in Fig.6.1. The function of each layer is as follows:

Layer 1: Each input I; ( = 1,...,n) in this layer is sent to the corresponding
nodes in the next layer directly. Thus there is no computation in this layer.

Layer 2: This is called the input membership function (MF) layer. Each node
in this layer contains a membership function correspoading to one linguistic
level (e.g. negative, nearly zero, etc.). The output at the i-th node for the
input I; is denoted by pa,, wherei=1,...,r;j=1,...,n.

Layer 3: This layer corresponds to the fuzzy inference. The number of nodes in
this layer is ™ nodes. The output signal at each node in the layer is calculated
as

Je = Frieskn = HMAW (6.1)

i=1
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Figure 6.1: Structure of MiIFREN

where k; € {1,2,...,r} and k =1,2,...,7".

Layer 4: This layer may be considered as defuzzification step. It is called the
Linear Consequence (LC) layer. There are also " nodes in this layer. The
output at the k-th node in this layer is calculated by

Oy = Bifi + by, (6.2)

where B and b are parameters of k-th node. For simplicity, in this work,
let define by = O for all k. Then Eq.(6.2) becomes

Ok = ﬁkfk. (6.3)

Layer 5: The structure of this layer is similar to the output layer of an artifi-
cial neural network with unity weight. The output of the MIFREN, O, is
calculated by

O = fur(liy....Jn) =Y _ Oy =pB"F, (6.4)

k=1
where 8= [Bi B2 -+ Pr]  and F=[fi fo -+ fm] .

As will be seen in the computer simulation results, this decomposition into §
layers enables the user to intuitively set the initial value of MIFREN’s parameters.
6.1.1 Mamdani’s Fuzzy Inference and MIFREN

In this subsection, the comparison between the conventional two inputs Mamdani'’s
fuzzy inference and the output response of MIFREN is given.
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6.1.1.1 Mamdani’s Fuzzy Inference Surface Response

In [28], the example of Mamdani’s fuzzy inference is presented with two inputs
and one output. The membership functions of the inputs X and Y and the output
Z are shown in Fig.6.2(a)-(c), respectively. And the four fuzzy rules are expressed
as

RurLe 1l Ir X 1S SMALL AND Y 1S SMALL THEN Z IS NEGATIVE LARGE,
RULE 2 IF X IS SMALL AND Y IS LARGE THEN Z IS NEGATIVE SMALL,
RULE 3 IF X IS LARGE AND Y IS SMALL THEN Z IS POSITIVE SMALL,
RULE 4 IF X IS LARGE AND Y IS LARGE THEN Z IS POSITIVE LARGE.

With the max-min composition and the centroid defuzzification, the overall
input-output surface response is obtained as shown in Fig.6.3.

6.1.1.2 MIFREN Surface Response

The fuzzy rules for two inputs MIFREN is similar to the rules employed in the case
of Mamdani’s. They are given by,

RurLt 1 IF X 1s SMALL AND Y Is sMALL THEN Z =8, f;,
RULE 2 IF X IS SMALL AND Y IS LARGE THEN Z = 855,
RuLE 3 IF X iS LARGE AND Y IS SMALL THEN Z = f3f3,
RuLE4 IF X 1S LARGE AND Y IS LARGE THEN Z = S, f4.

The initial value of 8; and f; (i = 1,2,3,4) are defined as

pr=-5 fl = MsmallX (X)Ju'smalll’ (Y):
ﬂg = —1.75 f2 = HgmallX (X)AulargeY(Y):
Bs = L75 | fs = phiargex (X)thsmany (Y),
Ps=35 f4 = Pargex (X )argey (Y),

where jin, and jo, are the corresponding membership functions of X and Y,

respectively.

To define these linear parameters f;, consider the output Z from Fig. 6.3,
it has the maximum and the minimum value around 5 and —3, respectively. That
means a linear parameter of Rule 1 (8;) is set to —5 and a linear parameter of
Rale 4 (B;) is set to 5. Sz can be set to any value between -5/2 and 0. And for 3,
it can be set to any value between 0 and 5/2. However, in Fig. 6.3, it can be seen
that the gradient nearly zero is very high. It may be better when 5, and 3, are set
nearly zero than —2.5 and 2.5. In this selection, —1.75 and 1.75 are selected for 3
and fBs, respectively. These functions are illustrated in Fig. 6.4 (a) and (b) for X
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and Y, respectively. Finally, the overall input-output surface response is obtained
as shown in Fig. 6.4.

In this example, the surface response shown in Fig.6.3 and Fig.6.4 are sim-
ilar which implies that the fuzzy behavior of the conventional Mamdani’s fuzzy
inference can also be obtained from the MIFREN. However, since the defuzzi-
fication step in MIFREN is included in the linear consequence layer, the initial
parameter setting becomes easier and the computation complexity is reduced in
MIFREN approach. Comparing to the well known TSK fuzzy system {60] which
uses a linear function in the consequence part, but the number of parameters de-
pends on the number of input signals, MIF REN needs only S, and b in Eq.(6.2)
for the consequence part of the k-th rule.
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Figure 6.2: Membership function of {a) X, {b) Y and (c} Z for the two inputs
Mamdani fuzzy inference system.
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Figure 6.3: Output-input surface response obtained from Mamdani fuzzy system.
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Figure 6.5: Surface response of MIFREN.
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6.1.2 MIFREN as Universal Function Approximation

In this subsection, it will be shown that MIFREN has the property of a universal
function approximation using the Stone-Weierstrass theorem [4,65].

Theorem 6.1.1 Stone-Weierstrass Theorem
“Let ) be a compact space of N dimensions and let F be a set of real functions on
a compact set 2. If

(1} F is an algebra,
(2) F separates points on 2, and
(8) F vanishes at no point on (2,

then F is dense in C(Q), the set of continuous real-valued function on Q. In other
words, for any € > 0 and any function g in C(S2), there 15 a function f in F such
that |g(z) — f(z)| < € for all z € Q"

Let the output of MIFREN y(z) €  and the input = € Q. From Eq.(6.4),
the output of two MIFREN networks can be rewritten as

Ny n
n@ = Y A ], z)

k=1 i=1

and

N2 n
Ylz) = Z P2k H M2 5 (z5)
k=1 j=1

Ny
= > Boxfor
k=1
= B3 F,.
Consider,

gz) = y{z) + ()
= BIFi1+ BIF .
F
- 16" en 5]
- BTF’
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where 37 = [BT B%] and F" = [F] F}] Since f; € R, then g(z) = y1(x) +

yz(:!:) e F.

Next, consider

g(x) = wlx)y(x),
= yl(m)ﬁg‘FZ)
B:‘F27

where B: = y1 ()85 and each value of B, or ﬁz, € R. Thus g{z) = y1()y(x) €

F.
ForaeR

g(x) = ay(z),
= a’ﬁ'fFls

~T
< 51F1:

where BT =apB]. That is g{x) = ap(z) € F.
From these results, it can be concluded that F is an algebra.

Next it will be shown that for any two points &, # % in {2 thereis y in F

such that y(z;) # y(x2).

T
Let z; = ['*"‘1’,1 Tig " -’CT,n] y T = [-'53,1 Z5o
Lo,
Defize two fuzzy rules of MIFREN as
RuLe1l IF 1, 1s A;; AND ;18 Al --- AND I, IS A,
RULE?2 IF I, 1S Ay; AND I 1S Ay --- AND I, IS Ay,

The output of MIFREN is

y(I) = pLfr + Bafo,

where I € R* denotes the input vector, and define

f = H“Al,i(Ii) = H¢A1.i(Ii - xf,i)a
i=1

=1

f2 = HF"Az.i(II') = H¢A3.i(1i - xg,i):
i=1 i=1

29,]" and @, #

THEN ¥, = 81 f1,
THEN y3 = Bafa.

(6.5)
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here 94, , represents the function used to implement the membership, i.e. pa,;(z) =
Y, (z — 73 ;), 73; and z3; are the center of p4,; and pi4,,, respectively.
Thus

y(:cl) = ﬂl H ":["Al.i (:c‘f,i - ‘T‘;,i) + 521_]: ¢A2,i (xg,z' - SL‘;’,-)
i=1

i=1
= b H 'l»bAl.i (0) + P2 H 1/)A2,|' (xtlj,i g xg,:‘): (6°6)
i=1 i=1
and

y(.’.l:z) = ﬁl H ¢A1,.' (xg,i - 3"‘1’,{) + ﬁ2 H '¢'A2,.' (xg,i - -'I?g,,')
i=1

i=1
= B[] ¥an(@; — 230) + Bo ] | ¥4,.(0) (6.7)
i=1 i=1
From the characteristic of the membership function one has
H ¥a,,(0) # H Ya (22 — z14)s (6.8)
i=1 i=1
and \ : n
H 111’142,.' (0) # H "/)Az.i (:‘U?,i - *’L'g,i)' (6'9)
i=1 i=1
Thus if 5 and B, are selected such that
é # HE..;: "»L'Az,.' (0) - HE:l ¢A2.i (:5:1:,:' iy zg,:‘) (6.10)
ﬁ‘l H;‘.—_l 1/)-4:,-' (O) - Hi:l ’l,[)A,.‘- (32,:' ~ zl,i)

then it can be shown that y(z,) # y(z2). It can be concluded that F processes
separability.

From Eq.(6.4), y(z) = 3%, Bxfi and V& € R*. The membership functions
are also defined such that fi > 0. If we also choose f; > 0 then y > 0 for any
¢ € B*. That is, any y € F with f > O can serve as the required y. It can be
concluded that F wanishes at no point.

Therefore, the muti-input FREN or MIFREN is a universal function approx-

imator from the Stone-Weierstrass theorem.

6.2 MIFREN with SMC

In this section, the MIFREN is applied as a direct adaptive controller. As in the
case of FREN the sliding bounds proposed in Chapter 5 is employed to the control
effort generated by MIFREN.
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6.2.1 Controller Design

————— — ——

e - Adaptive ‘4-—————-----—---—1
| ——Se- |
| { |
1 e(k) Y " :
xdeel) B ~| ™MiFREN “OL!  Prant > (k)
Ae(k) o y

Figure 6.6: Control system using MIFREN

To improve the proposed control algorithm in 5.2, here the two-input MIFREN
is used as a controller. The structure of the control system is illustrated in Fig. 6.6.
Here, MIFREN receives the error signal e(k) and its change Ae(k) and computes
the control signal u(k),

u(k) = fur (e(k), Ae(k)), (6.11)

where fur () denotes the MIFREN’s operation in Eq.(6.4).

As an example of how the initial value of FREN’s parameters are selected,
consider the following fuzzy control rules,

RULE 1 IF e(k) 1s N AND Ae(k) 1s N THEN uy (k) = 81 fi(k),
RULE 2 Ire(k) 1s N AND Ae(k) 1S P THEN uy(k) = fafolk),
RULE 3 1F e(k) 1s P AND Ae(k) 1s N TBHEN uz(k) = S3f3(k),
RULE 4 IF e(k) 1sP AND Ae(k) 18 P THEN uy(k) = Bafu(k),

here N and P denote the negative and the positive linguistic level respectively.
Assume that both e and Ae € [~1, 1], and the minimum and the maximum values

of control effort are —1 and 1, respectively, i.e. u(k) € [—1,1]. The initial value of
Bi and f; (i =1,2,3,4) are defined as

pL = -1 i = pneler)tinac(Aey),
Bz = —0.5 | fo = pne(er)tpac(Aex),
Bz =05 | f3 = preler)inac{Deg),
Bs=1 J1 = preler)rac(Aeg),

Then, MF parameters are selected to cover the error range. The initial setting of
all parameters are given as:

pne(z) = pnac(z) = (1+exp[20(z+0.5)]) 7",

pre(z) = ppac(z) = (1 + exp[-20(z — 0-5)])"1 .
The adaptation of all MF and LC parameters are performed by using the algorithm
in subsection 3.3.
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6.2.2 Computer Simulation Results
6.2.2.1 Robotic Control

The characteristic of the nonlinear discrete-time robotic plant [50] is given as

i3] = [0 of B8] + [rat] [0 02
where u(k) is the control signal, and
f(=(K)) = (2T —~ Dz, (k) + 2(1 — T)zz(k) + 1072 sin(z, (k).

where T is the sampling interval and equals to 0.01 second. The reference signal
x4 is set as ~

(k+1)] _ 7 [ sin(ZkT) |
a(k+1) = [ﬁgm 1%] =3 [sin?%(k+ 1)T)] : (6.13)

Denote the error e(k) = Ta(k) — za2(k) and ¢ in Eq.(5.3) is defined asc = [1 2].
The fuzzy control rules are given by,

RuLe 1 IF e(k) s N AND Ae(k) s N THEN w (k) = S fi,
RULE 2 IF e(k) 1s N - AND Ae(k) 1s Z THEN uy(k) = fafa,
RULE 3 IF e(k) 1SN AND Ae(k) 1P THEN uz(k) = S5 f3,
RULE 4 IFe(k)1sZ AND Ae(k)1s N THEN u4(k) = b fs,
RULE 5 iF e(k) 1sZ AND Ae(k)isZ THEN us(k) = fsfs,
RULE 6 IF e(k} 18Z AND Ae(k) 1s P THEN ug(k) = Fsfe,
RuLE 7 IF e(k) 1P AND Ae(k) s N THEN uz(k) = 61 f+,
RULE 8 IF e(k)1s P AND Ae(k) 1SZ THEN ug(k) = Bsfs,
RULE 9 IFe(k)1sP AND Ae(k) 1= P THEN ug(k) = Bofo,

where N, Z and P denote the negative, the zero and the positive linguistic levels
respectively. The initial values of §; and f; (i = 1,2,-+-,9) are defined as

B1 =30 | fi = pxeler)inae(Ler),
B2=21 | fo=pxeler)izac(lAes),
Bz =15 | fs = uxeler)ppac{Aer),
 Ba =06 | fa= preler)pnac{ler),
Bs =00 | fs = pzeler)itzac(Dex),
Bs = —0.6 | fo = pzeler)itpac(Aex),
Bz = —1.5 | fr = ppeler)unac(Dex),
Bs = ~2.1 | fs = ppelex)tizac(Aey),
Po = —3.0 | fo = ppeler)tipac(Aer),

The MF parameters are selected as shown in Fig. 6.7 (a). The parameter learning
process is finished at k = 2,000 and the final MF parameters are shown in Fig.

fl

6.7 (b). The linear parameters f; after learning process become
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BL=3.0300 | B =2.2080 | B = 1.4933,
Bi=0.7146 | Bs =0.0712 | Bs = —0.6653,
B; = —1.4870 | Bs = —2.3605 | B = —3.0179.

e(k) are shown in Fig. 6.8 (a)-(c), respectively.

The waveforms of the output signal z,(k), the control effort u(k) and the error
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Figure 6.7: MF of MIFREN for robotic control.
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Figure 6.8: Simulation results of robotic control using MIFREN.
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6.2.2.2 Hénon Map Control

The discrete-time Hénon map from subsection 5.3.2 is tested with MIFREN con-
troller to verify its performances. From Eq.(5.35), the characteristic of the con-

trolled Hénon map is given by,

26D =1 o e+ Laten] + [0 o2

where u(k) is the control signal and
f(z(k)) = A — z3(k) + Bz (k), (6.15)

when A = 1.29 and B = 0.3. Let ¢ = [1 2] for the sliding bounds setting
parameter in Eq.(5.1). The fixed point yr is set again to 0.838486, then =4 can

be written as

za(k +1) = [;’2& i 3] = [zi] : (6.16)

Denoting the error e = z3(k) — yr, the fuzzy control rules are given by,

RULE1 IFe(k) s N AND Ae(k) IS N THEN u,; (k) = B1f1(k),
RULE 2 IF e(k) 1S N AND Ae(k) 18 Z THEN uy(k) = Bafa(k),
RULE 3 IF e(k) s N AND Ae(k) s P THEN uz(k) = Bsf3(k),
RUultz 4 Ire(k)1SZ AND Ae(k) 1s N THEN uy(k) = B1f4(k),
RULE 5 IF e(k)1sZ AND Ae(k) 1sZ THEN us(k) = Bsfs(k),
RULE 6 IF e(k)1sZ AND Ae(k) 1s P THEN ug(k) = Befelk),
RULE 7 IF e(k) 1S P AND Ae(k) 1s N THEN uz(k) = B7f:(k),
RULE 8 IF e(k) 1s P. AND Ae(k) 1s Z THEN ug(k) = Gsfa(k),
RULE § IF e(k) 1s P AND Ae(k) 1s P THEN ug(k) = Bsfo(k),

where N, Z and P denote the negative, the zero and the positive linguistic level
respectively. The initial value of §; and f; (i = 1,2,.--,9) are defined as

Br=—1.5 1 fi = pxeler)nac(Dex),

=-10}| fo = #Ne(ek)#ZAe(Aek)r
Bs = —0.5 | fs = punelex)tirac(Dex),

= —0.2 | fs = pze(er)unaec(Aeg),
Bs =0.0 | f5 = pzeler)pzac(Aer),
Bs =0.2 fo = pzeler)pac(Acs),
B: =0.5 fr= NPe(ek)ﬂNAe(Aek):
Ps =1.0 | fo = ppeler)iizac(Dey),
Po=15 | fo= preler)itrac(Dex),

The MF parameters are selected as shown in Fig. 6.9 (a). The parameter learning

process is finished at ¥ = 150 and the final MF parameters are shown in Fig. 6.9
(b). The LC parameters §; after learning process become,
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B = —1.5769 | B2 = —1.0791 | 3 = —0.4926,
B1 = —1.3966 | Bs = —0.6083 | Bs = 1.7764,
B = 04778 | Bs = 1.0808 | Bs = 1.6655.

The output signal z2(k), the control effort u(k) and the error e(k) are shown in
Fig. 6.10 (a)-(c), respectively. These signals are illustrated again in Fig. 6.11
when ¢ = [1 4].

In these simulation tests, the convergent speed of the proposed controller
is improved from FREN in Chapter 5. By using MIFREN as the controller, good
results are obtained in the first testing epoch or process. While the control system
based on FREN and sliding bounds gives good results after 2,000 testing epochs.
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Figure 6.10: Simulation results of Hénon map control using MIFREN.
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6.3 Hybrid Learning Algorithm for MIFREN

In this section, a hybrid algorithm to adjust all MIFREN’s parameters is proposed.
The normalized least-mean square and the error backpropagation are modified to
adjusted LC and MF parameters, respectively. The performance of the identifica-
tion based on MIFREN and its hybrid learning technique is presented by using the
computer simulation test. The comparison between the proposed method and the
well known ANFIS is discussed.

6.3.1 Adaptation of LC Parameters

Here, an adaptive technique based on adaptive filter [55] is proposed to adjust all
LC’s parameters i.e. 8 during the system operation. We define the error signal as,

é(k) = d(k) — y(k), (6.17)

where d(k) is the output from the nonlinear system under determine and y(k) is
the estimated value of d(k) obtained from MIFREN at time index k.
From Eq.(6.4), the output from MIFREN is given by

y(k) = BRYTF(R), (618)

and Eq.(6.17) can be written as
é(k) = d(k) — B(k)T F(k). (6.19)

Next define the cost function as
J(8) = [Blk+1) = BK)] [Blh+1) — B +Aid(k) — Bk +1)*F(B)], (6.20)

the value of Lagrange multiplier A will be determined shortly. The local minimum
point of J(k) occurs wken

ag(i(i)l) =2[B(k+1) — B(K)| - AF(k) =0, (6.21)

which gives
Blk+1) = Bk) + -;—AF(k). (6.22)
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Thus A can be obtained as the following:

Il

dk) = B(k+1)FE),
= [ + F®)] F),
= BHRTER) + NFEI

NG = d(k) = BETFE),

= é(k):
o 2é(k)
A —_ W- (6-23)
Thus the LC parameter adaptation becomes
k+1) =Bk _&E) gy, 6.24

where [|F(k)|| is not zero because of its membership functions property.

6.3.2 Adaptation of MF Parameters

The technique of error back-propagation is applied to tune MF parameters. Here
the cost function is defined as '

E() = 51d(k) — y R (6.25)

The MF parameters of the i-th fuzzy set for the j-th input a;; are adjusted
by

O¢ (k) (6.26)

a,-_.,-(.’c =+ ].) — a,,-j(k) — 1o aaij(k),

where 79 > 0 is a pre-defined constant. And

OE(k) _ By(k) _ TaF (k) -
aa‘ij . e(k) aa‘J (k)ﬁ(k) 1._1 (627)
Consider the I-th element of F(k), then from Eq.(6.1) we have
30;'5 7 6@, 11,02 4ol
a n
= 5—— H FAy . (L(k)
G O
pa;i(Li(K)Y)  Bay
Thus
OF (k) _ 1 Opeay i1 (k) Fb). (6.28)

Bai;  pay (k) Oay
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And the update equation becomes
aij (k + 1) = ai; (k) + modi;(k), (6.29)

where

) Ouay(di(k))

P

%k) = TGE) day
(h
@

B(k)T F(k),

) Ona,  (1;(k))
i(k))  Ouayj

More details of this adaptation will be discussed later in the computer

y(k). (6.30)

)U'AJJ

simulation subsection.

6.3.3 Nonlinear System Identification Results

In this simulation test, the comparison between the MIFREN and the well known
ANFIS {28] are performed. ANFIS is selected because all of its parameters, linear
and nonlinear, are adjusted and its perfornance is well known. Both networks are
used to identify a two-dimensional sinc function defined by

z(z,y) = @g)ﬂ%}fl (6.31)

its characteristic is illustrated in Fig. 6.12.

-0 -10

Figure 6.12: Two-dimensional sinc function.

At first, the two-input ANFIS is used to model the sinc function. Each input
is classified into 3 linguistic values ,i.e., Negative, Zero and Positive. The training
procedure is performed around 50 epochs. The initial and the final parameters are
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are obtained as shown in Fig. 6.13. The result of ANFIS model is shown in Fig.
6.14. In this simulation, two 50 x 50 points random data sets are selected. One is
used to adjust parameters in the learning phase and the other is used to test the

results.
nitial MFs on X : Initia MFs on Y
1 1
a a
E 08 E 0.8
E 06 E os}
‘g 04 ‘g 0.4}
E’oz g’oz
o o —————————————————— —

-10 -5 0 5 10

Figure 6.13: Initial and final parameters setting of ANFIS.

Next MIFREN and its hybrid learning algorithm are used to indentify the
sinc function. The estimated sinc output =z is obtained as

2= fur (2,9} (6.32)

The IF-THEN rules are defined as the following:

Rutel IFrz1SN AND y I1s N THEN % = B f1(k),
RULE2 IFziSN AND y 1s Z THEN % = Af2(k),
RULE3 IFzisN AND y 1S P THEN 3 = B fa(k),
RULE 4 1Fz1SZ ANDy IS N THEN % = £ fs(k),
RULES IFzi3Z ANDy I8 Z THEN % = Ssfs(k),
RuLE6 Irz1sZ AND y ISP THEN % = Bsfe(k),
RUuLE7 IFz1sP AND y 1S N THEN % = S f7(k),
RUuLE8 Irz1sP AND y IS Z THEN % = B fs(k),
RULEO IFz ISP AND y 1S P THEN % = fofo(k),

here N, Z and P denote negative, zero, and positive linguistic level respectively.
The initial value of 8; and f; (i =1,2,--. ,9) are defined as
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Figure 6.14: Estimated two-dimensional sinc using ANFIS.

Br=-10 | fi = pnz(z)iwy (v),
Be = 08| fo = pra(z)pz,(¥),
fa = =05 | fo = pnz(T)pry(y)s
Br= =02 | fi = pza(z) iy (%),
Bs = 0.0 | fs = pzz(x) iy (),
Bo =02 | fo = pzz(z)piry(y),
ﬁ7 =0.5 f7 = I‘P:(E)PNy(y):
ﬂs = 0.8 fs = ﬂPz(I)”Zy(y):
Bo=10 | fo = ptez{z)pry(v)-

The MF parameters are selected as shown in Fig. 6.15 (2). The parameter
learning process is finished after 50 epochs and the final M¥ parameters are shown
in Fig. 6.15 (b). The LC parameters f3; after learning process become,

BL=02614 | B, =01140 |Bs = —0.1607,
B1 = —0.6449 | Bs = —0.5237 | Bs = —0.6022,
Br = —0.0149 | Bs = —0.0397 | By = 0.0027.

The result of MIFREN model is shown in Fig. 6.16. Fig. 6.17 shows the
RMSE (root mean squared error) curves for both ANFIS and MIFREN. Here

RMSE is definded as M

In this simulation gxperiment, these results show that MIFREN has the
impressive performance over ANFIS when the numbers of adjustable parameters
are equal. The convergent speed of MIFREN is faster and the RMSE of MIFREN
is less than ANFIS’s. '
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(b) Final setting.

Figure 6.15: MF’s parameter of MIFREN for the sinc function identification. |
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Figure 6.17: RMSE curves of two-dimensional sinc identification.
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