TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (ENGLISH)	iv
ABSTRACT (THAI)	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
ABBREVIATIONS AND SYMBOLS	xii
CIVA PETER A ANTER O DATE TO A	1
CHAPTER 1 – INTRODUCTION	302
1.1 Introduction	
1.2 Characteristics of wastewaters from pickling food factory	•2>
1.3 Salinity	3
1.4 Chloride and its effects	4
1.5 Methods for chloride determination	5
1.5.1 Standard methods	5
1.5.2 The methods employed in this work	7
1.5.2.1 Sequential Injection Analysis (SIA)	7
1.5.2.2 Potentiometric detection	11
1.5.2.3 Argentometric method (Mohr method)	12
1.6 Other supporting parameters	13
a 1.6.1 pH 111300 melo a ella	2 0 13
1.6.2 Dissolved oxygen (DO)	14
1.6.3 Temperature	Uni ¹⁵ ersi
1.6.4 Conductivity	15
1.6.5 Total dissolved solids (TDS)	e / 16/ e
1.7 Design of a monitoring program	16
1.8 Research objectives	18

	Page
CHAPTER 2 - EXPERIMENT	19
2.1 Sampling site description and sample collection	19
2.1.1 Sampling site description	19
2.1.2 Sample collection	22
2.2 Instruments, chemicals and apparatus	23
2.2.1 Instruments	23
2.2.2 Chemicals	24
2.2.3 Apparatus	24
2.3 Preparation of solutions	25
2.3.1 Preparation of reagents for SIA method	25
2.3.2 Preparation of reagents for Argentometric method	26
2.3.3 Preparation of reagents for dissolved oxygen analysis	26
2.4 Determination of chloride by sequential injection potentiometric	27
method	
2.4.1 Schematic diagram	27
2.4.2 Procedure	27
2.5 Determination of chloride by Argentometric method	28
2.6 Data analysis	28
CHAPTER 3 - RESULTS AND DISCUSSION	30
3.1 Supporting data set	30
3.1.1 Water temperature	33
3.1.2 Conductivity	34
3.1.3 Total dissolved solids	35
Copy3.1.4 pHit by Chiang Mai U	1362/SIT
3.1.5 Dissolved oxygen	37
3.2 Chloride analysis	38
3.2.1 Calibration graph for chloride	38
3.2.2 Chloride results	40

	Page
3.3 Precision study of the SIA method	41
3.4 Accuracy study of the SIA method	43
3.5 General assessment of water quality in terms of salinity	45
3.5.1 The relationship among parameters	45
3.5.2 Chloride variation among sampling times	46
3.5.3 Comparison of control site with other sites	46
3.5.4 General assessment	46
CHAPTER 4 – CONCLUSION	49
REFERENCES	51
APPENDICES	54
APPENDIX 1	55 5
Pictures of monitoring sites	
APPENDIX 2	60
Procedure of Dissolved Oxygen analysis (Winkler method)	
APPENDIX 3	62
Industrial effluent standards of Thailand (Department of	
Environmental Quality Promotion – Ministry of Natural Resources	
and Environment)	
APPENDIX 4	66
Output from data analysis by SPSS program	
CURRICULUM VITAE	
CURRICULUM VITAE	70

LIST OF TABLES

Table	Page
1.1 Characteristics of wastewater from pickling manufacture (Linda et al.,	2
1976)	
1.2 Brine wastewater in comparison with typical domestic sewage (Brown	2
et al., 1973)	
1.3 Salinity classes for irrigation waters (Shaw et al., 1987)	3
1.4 The relationship of DO, salinity and temperature	14
1.5 Solubility of solutes as a function of temperature	15
2.1 Summary of sites description	20
2.2 Summary of sample collection and using methods	22
3.1 Supporting data - sampling date 7 August, 2003 (Rainy season) - the	30
1 st time	
3.2 Supporting data - sampling date 16 September, 2003 (Rainy season) -	31
the 2 nd time	6
3.3 Supporting data - sampling date 2 December, 2003 (Dry season) - the	32
3 rd time	
3.4 Supporting data - sampling date 6 January, 2004 (Dry season) – the 4 th	33
time	
3.5 Voltages of chloride standard solutions	39
3.6 The relative error of the achieved slopes	40
3.7 Chloride concentration (mol/l) of 8 sampling sites during 4 sampling	40
times by SIA method	
3.8 Precision study of chloride standard solutions	42
3.9 Chloride concentration (mol/l) of 8 sampling sites during 4 sampling	43ersity
times by Mohr method (cf. Table 3.7)	
3.10 Average chloride of each site by two methods	Γ_{44} / Θ (

LIST OF FIGURES

Figure	Page
1.1 Typical sequential injection system utilizing programmed forward	, 8
reversed and stopped flow. HC, Holding coil; AW, auxiliary waste	
and W, waste (Ivaska et al., 1993)	
1.2 S equenced z ones of reagent (R) and s ample (S) i ntersperse during	g 9
flow reversal while the detectable product (P) is formed. On arriva	131
at the detector a suitable section of the product zone is captured	d 🌏
within the observation field of the detector by selecting a stop delay	y
time t_d for reaction-rate measurement (Ivaska et al., 1993)	
1.3 Principle of sequential injection technique showing manifold (top) 10
and readout (below). The plunger of the piston pump moves in	
discrete steps to aspirate wash solution (W), sample solution (S) and	d
reagent solution (R) into a channel which consists of reaction (R)), 7
detection (D) and hold-up (H) sections. The selector valve provide	S
sequential injection of the solutions into the channel throug	h
preprogrammed steps synchronized with piston movement. Th	e
record (below) shows a typical double peak, the trough of which is	s
located at the time when the flow has been reversed (Ruzicka et al.	,
1990)	
1.4 Steps in the design of a monitoring program	17
2.1 The study site	20
2.2 Diagram of sampling sites	21
2.3 The SIA system for chloride determination	25
2.4 A schematic diagram of the SIA system for chloride determination	ni ₂₇ ersity
3.1 Water temperature variation among sampling times and sites (se	e 34
Tables $3.1 - 3.4$)	
3.2 Conductivity variation among sampling times and sites (see Table	es 35
3.1 - 3.4)	

Figure	Page
3.3 TDS variation among sampling times and sites (see Tables $3.1 - 3.4$)	36
3.4 pH variation among sampling times and sites (see Tables $3.1 - 3.4$)	37
3.5 DO variation among sampling times and sites (see Tables $3.1 - 3.4$)	38
3.6 Calibration graphs for chloride	39
(A) Concentration in range of 30 – 300 ppm	
(B) Concentration in range of 0.01 – 0.12 M	
3.7 Chloride variation among sampling times and sites	41
3.8 Precision study of SIA method	42
3.9 Comparison chloride results of two methods	44
3.10 Linear correlation between the two methods	45
3.11 Wastewater from factory discharges to around channel	48

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS AND SYMBOLS

DO Dissolved Oxygen

BOD Biochemical Oxygen Demand

TDS Total Dissolved Solids

SIA Sequential Injection Analysis

FIA Flow Injection Analysis

Temp. Temperature

I.D. Internal diameter

TP Total phosphorus

SS Suspended solids

Kjeld-N Total Kjeldahl nitrogen

Cond. Conductivity

TOC Total organic carbon

APHA American Public Health Association

LSD Least significant difference

SD Standard deviation

%RSD Relative standard deviation

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved