CHAPTER 3

MAIN RESULTS

This chapter is divided into 3 sections. We obtain a theory of fixed point
of selfmapping in a complete metric space in Section 3.1. This result generalizes
the result in [1]. In Section 3.2, common fixed point of two and four mappings are
studied and we obtain many results which generalize those in [1],[3] and [4]. In
the last section, Section 3.3, some fixed points theory of composition of mappings

are studied there results generalize those in [5].
3.1 Fixed Point of Selfmappings in Metric Spaces

Theorem 3.1.1 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R such that

(1) d(z,Tz) < ®(x) — &(Tz),Vr € X,
(2) d(Tx,Ty) < max{d(z,y), rd(z, Ty) + cod(y, Tx)},Vo #y € X,

where ¢c; > 0,c9 > 0 and ¢; + co = 1. Then T has a unique fixed point.
Proof. Choose any xy € X and define the sequence (z,,) by z, = Tx,_1,n € N.
Then

d(xn, Tnr1) = d(xp, Tx,) < O(2,) — O(Txy,) = P(2,) — P(2pa1)-

Define a,, = ®(z,),n = 1,2,.... It is easy to see that the sequence (a,) is nonneg-
ative real sequence and nonincreasing. Thus (a,) is a convergente sequence, so it
is Cauchy.

For m,n € N with m > n, we have
d(l‘na xm) S d(l’n, xn-i—l) + d(xn—f—ly xn+2) +...+ d(xm—la xm)

< (D(wn) = ©(2n11)) + (P(Tnt1) = P(nga)) + - 4 (P(@m1) — P(wm))

= d(x,) — O(zp) = ap — am.
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Since (a,) is Cauchy, it implies that (z,) is Cauchy in X. Hence there
exists z € X such that lim,, . =, = . Now, we show that x is a fixed point of T’
Casel. There exists m € N such that z,, = z for all n > m. Then
0 =limy, oo d(Txy, Tz) = limy, oo d(x41, Tx) = d(z, Tx). Hence Tx = z.
Casell. There exists a subsequence (z,,) such that z,, # z,Vk € N. By(2), we
have

d(Tz,Tx,,) < max{d(z,z,, ), c1d(x, Tx,,) + cod(z,,, Tx)}
take k — oo, we have
d(Tx,x) < max{d(z,z),c1d(x,x) + cod(x, Tx)}
< cod(Tx, z),
so d(Tx,z) = 0 and hence Tz = z. Thus z is a fixed point of 7.

Finally, we show that fixed point is unique. Let Tu = w and Tv = v. Suppose
that w # v. Then

d(u,v) = d(Tu, Tw) < max{d(u, v), c;d(u, Tv) + ead(v, Tu)}
< max{d(u, v), cd(u, v) + cad(v, )}
< max{d(u, v), (¢ + c2)d(u, v)}
= d(u,v) (since ¢y + ¢ = 1),

which is a contradiction, so u = v. Therefore fixed point of T is unique. O

Example 3.1.2 Let X = [1,00) with the usual metric d(z,y) = |z — y|. Define
T:X — X by Tz = 3(x+1),Vz € X, and define & : X — Rt by ®(z) =
3z + 1,Vz € X. Then d(z,Tz) = |z — Tz| = |z — 3o — 3| = 1|z — 1| and

O(z) —(Tz) =Bz +1) = [3(Tx) + 1]

:3x+1—a%@+1»_1

3 3
3 3
= ¢ — —
2 2
3
= —|z —1]
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so d(z,Tx) < ®(z) — ®(Tx),Vxr € X. And for x # y € X we have

1 1 1 1 1 1 1
A(T2,Ty) = T — Ty = [+ 1) = Sy + D = |5 +5 = 5y — 51 = 5lo ]

and d(z,y) = |z — y| so d(Tx, Ty) < d(x,y). Thus T satisfies the condition (2) of
Theorem 3.1.1 and (1) = 2(1+1) = 1. O

Corollary 3.1.3 (cf. [1]) Let (X,d) be a complete metric space and let T : X — X.

Suppose that there exists a mapping ® : X — Rt such that
(1) d(z,Tx) < ®(z) — &(Tx),Va € X,
(2) (T, Ty) < max{d(z,y), [d(x, Ty) +d(y, Te)]/2}, Yo £y € X.

Then T has a unique fixed point.

3.2 Common Fixed Point of Selfmappings in Metric
Spaces

Theorem 3.2.1 Let S and T be two weakly compatible selfmapping of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx, Sy),c1d(Tz,Sx) + cod(Ty, Sy),d(Tz, Sy)},

Ve #y e X, where 0 <e¢; <1 and 0 < ¢y < 1.
(3) TX C SX.

If SX or TX is a complete subspace of X, then T' and S have a unique commom,
fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (z,,)
in X satisfying lim,, ., T'x,, = lim,, ., Sz, = t for some t € X. Suppose SX is
complete. Then lim,,_ o, Sz, = Sa for some a € X, so lim,,_,o T'x,, = Sa.

We show that Ta = Sa.
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If there exists ng € N such that z,, = a Vn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,, ) of (z,) such that z,, # a Vk € N. By (2), we have
d(Txy,,Ta) < max{d(Sz,,, Sa),c1d(Tx,,,Sx,,) + c2d(Ta, Sa),d(Tz,,,Sa)}.
Take k — oo, we have

d(Sa,Ta) <max{d(Sa,Sa),c;d(Sa, Sa) + cod(Ta,Sa),d(Sa, Sa)}
= cod(Ta, Sa).

Since ¢y < 1, it implies that d(Ta, Sa) = 0, hence T'a = Sa.

Since T" and S are weakly compatible, T'Sa = STa and TTa =T Sa =
STa = 5Sa.
If Ta # a, by(2), we have

d(Ta,TTa) < max{d(Sa,STa),cid(Ta,Sa) + cod(TTa,STa),d(Ta,STa)}
<max{d(Ta,TTa),c1d(Ta,Ta) + c:d(TTa,TTa),d(Ta, TTa)}

=d(Ta, TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T". The prove is similar when 7'X is assumed to be a complete
subspace of X since TX C SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u # v. By(2), we have

d(u,v) = d(Tu, Tv) < max{d(Su, Sv),c1d(Tu, Su) + c2d(Twv, Sv),d(Tu, Sv)}
< max{d(Tu,Tv),d(Tu,Tv)}
=d(Tu,Tv),
which is a contradiction, hence u = v.

Therefore 7" and S have a unique common fixed point. OJ

Taking ¢; = ¢ in Theorem 3.2.1, we get the following result:

Corollary 3.2.2 Let S and T be two weakly compatible selfmapping of a metric
space (X, d) such that
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(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sxz, Sy), c[d(Tz, Sx) + d(Ty, Sy)],d(Tz, Sy)},
Ve #ye X, where 0 < c < 1.

(3) TX C SX.

If SX or TX s a complete subspace of X, then T' and S have a unique commom
fixed point.

Taking co = 0 in Theorem 3.2.1, we have the following result:

Corollary 3.2.3 Let S and T be two weakly compatible selfmapping of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx,Sy),cd(Txz,Sxz),d(Tz,Sy)},
Ve #y e X, where 0 < ¢ < 1.

(3) TX C SX.

If SX orT'X s a complete subspace of X, thenI' and S have a unique commom
fixed point.

Taking ¢; = 0 in Theorem 3.2.1, we have the following result:

Corollary 3.2.4 Let S and T be two weakly compatible selfmapping of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx, Sy),cd(Ty, Sy),d(Tz, Sy)},
Ve #£ye X, where 0 < ¢ < 1.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.
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Theorem 3.2.5 Let (X, d) be a complete metric space and let S,T : X — X are

commuting mappings satisfying the inequality
d(Sz, Sy) < F(max{d(T'z,Ty),d(Tz,Sz),d(Ty, Sy), d(Ty, Sz)}),Vz,y € X (1)

where F' - RY — R is a nondecreasing continuous function such that F(t) < t
for each t > 0.
If SX Cc TX andT s continuous then S and T have a unique common, fixed point.
Moreover, if x is the common fixed point of S and T, then for any o € X, Sz, —
x and Tx, — x where (z,) is the sequence given by Sz, = Tx,. 1, n=10,1,2,...
Proof. Let zg € X, chose 1 € X such that Sxq = T'x;. This can be done since
SX Cc TX. In general, having chosen x,, choose x,, 1 such that Sz, = Tx, 1.
We shall show that

d(Sxy,, Stpy) < F(Swp_1,Sz),) (2)

d(Sxp, Swpi) < d(Sxy—_1,Sy,) (3)

By (1 ) we have

d(Szp, Stpiq) < F(max{d(Tzy,, Tx, 1), d(Txn, Sty), d(Txns1,STpi1), d(TTpi1, Sz0)})
< F(max{d(Sx,_1,S%,),d(Sxy_1,5%,), d(STp, STpi1),d(Szy, Szp)})
< F(max{d(Sz,_1,5%,), d(Sxn, Sxni1)}).

If 0 <d(Szp-1,Sx,) < d(Sxp, Stpi1), then d(Szy, Stpiq) < F(d(Sxy, STpit))

< d(Szy, St,+1) which is a contradiction. Hence d(Sz,_1,Sx,) > d(Sz,, STpi1)

and d(Szy, Sty1) < F(d(Sx,-1,57,)). Thus (2) and (3) are satisfied. Thus the

sequence (d(Sx,, Sx,11))22, is a nonincreasing sequence of positive real number

and therefore has a limit L > 0. We claim that L = 0. Suppose L > 0, by taking

n — oo in (2) and continuity of F', we have

L = lim d(Szp, Styi1) < lim F(d(Sx,-1,5%,)) = F(L) < L,

n—oo n—oo

which is a contradiction, hence L = 0. Thus lim,, ., d(Sz,, Sx,11) = 0.

Next, we show that (Sz,)%, is a Cauchy sequence in X.
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Suppose not. Then there exist € > 0 and strictly increasing sequences of

positive integer (my) and (ng) with my > ng > k such that

d(STy,, Sy, ) > € (4)

Assume that for each k, my, is the smallest number greater than ny for which (4)
holds. By (3) and (4)
€ < d(Sxpm,, Stn,) < d(Stp, , STim,—1) + d(STp,—1,STp,)
< d(STimy, ST, 1) + €
< d(Sxy,Sx_1) +e€
This implies lim,, o d(STy,, , STy, ) = €.

By triangle inequality and (3), we have

(ST, , Stn,) < d(STmy, STmy+1) + A(STmy 415 SThyt1) + A(STpy 41, ST, )

< d(Szp,, STm,—1) + d(STmy+1, STnyt1) + d(STh—1, STp,)

< 2d(Swy, Swp—1) + d(STpm; 41, STpy 1) (5)

Consider for ng, my € N with my > ng, by (1) and (3), we have

d(STpmy 41, STn,+1) < F(max{d(TTm,+1,TTn,+1), AT Ty 11, STy 41),
A(Txp, 41, 5Tn,+1), d(TTpy 41, STm,+1)})
< F(max{d(Sxy,, Sty,), d(STm,, STmy+1), (ST, STpy+1),
d(Sxp,, STm, 4+1)})
< F(max{d(Sxy,, S®n, ), d(STn, , Stn,+1), (ST, s STimy+1)})
Since d(Sxp,, STmy+1) < d(STimys1, STy ) + (ST, Spy), so by (1) and (3), we

have

d(STmy 11, STnyy1) < F(max{d(Sxpm,, Sy, ), d(Stp,, STn+1), d(STmy 1, ST, ) +
d(STm,, Stn,)})
< F(max{d(Szy,, Sy, ), d(STn,, STpn,+1), d(STp, 41, STp, ) +
d(Sxpm,, Stp,)})

< F(d(Szp,, Stn,) + d(STh, 11, 5Tn,)) (6)
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Hence by (3),(5) and (6), we have

d(STm,, Stp,) < 2d(Sxy, Stp—1) + F(d(Sxp, 41,52, ) + d(STp,, Stp,))
< 2d(Swg, Swi—1) + F(d(Sxp,—1, STn,) + d(STpm,, ST4p,))
< 2d(Sxy, St—1) + F(d(Sxk_1,Sx) + d(STpm, , Sxpn,))

By taking & — oo in above inequality, we have € < F'(€) < e which is a contradic-
tion. Hence (Sxz,)r, is a Cauchy sequence in X. Since X is a complete metric
space, there exist ¢ € X such that lim,,_,., Sz, = t. Also lim,,_,., Tx,, = t.

Since T is continuous, we have lim,,_,. T%x,, = T't and lim,,_., 'Sz, = T*t.

So lim,,_,oo ST'x,, = Tt because T" and S are commute. We now have
d(STw,, Sz,) < F(max{d(T?z,, Tz,),d(T*z,, STx,),d(Tx,, Sz,),d(Tx,, STx,)}).
By taking n — oo, we have

d(Tt,t) < F(max{d(Tt,t),d(Tt, Tt),d(t,t), d(t, Tt)})
< F(d(Tt,1)).

This implies d(T't,t) = 0, hence Tt = t.
By (1), we have

d(St, Sz,,) < F(max{d(Tt,Tx,),d(Tt,St),d(Tx,, Sx,),d(Tz,, St)}).
By taking n — oo, we have

d(St,t) < F(max{d(Tt,t),d(Tt, St),d(t,t),d(t, St)})
< F(d(t, St)).

This implies St = t. Hence t is a commom fixed point of S and T
Finally, we show that common fixed point of 7" and S is unique.

Let Sw = Tw = w and Sv = T'v = v, then by (1)

d(w,v) = d(Sw, Sv) < F(max{d(Tw,Tv),d(Tw, Sw),d(Tv, Sv),d(Tv, Sw)})
< F(d(w,v)).
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This implies w = v. Therefore S and T have a unique common fixed point. |

Example 3.2.6 Let X = [1,00) with the usual metric d(z,y) = |r — y|. Define
S,T: X — X by St =x and Tex = 22,Vo € X and define F' : R" — RT by
F(t) = £, ¥t e RT. Then

(1) S and T are commute.

(2) We see that

d(Sz,5y) =[Sz = Syl

and

d(T'z,Ty) = [Tz — Ty|
= |2* — |

= |z +y|lz =y

since |z —y| < |z +y|lz —y|,Va,y € X and |z —y| < @M—yh so we have
d(Sz, Sy) < F(d(Tx, Ty)).
Thus d(Sz, Sy) < F(max{d(Tz,Ty),d(Tx, Sx),d(Ty, Sy),d(Ty, Sz)}).

(3) T1=51=1. 0

Corollary 3.2.7 Let (X,d) be a complete metric space and let S,T : X — X be

commuting mappings satisfying the inequality
d(Sz, Sy) < ¢+ max{d(Tz,Ty),d(Tz, Sz),d(Ty,Sy),d(Ty, Sz)}, Y,y € X,

where 0 < c < 1. If SX CTX and T is continuous then S and T have a unique
common fized point.

Proof. Define F': R™ — R* by F(t) = ct for all t € RT. Then F is satisfied the
condition in Theorem 3.2.5. Hence the corollary is obtained directly by Theorem

3.2.5. .
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Corollary 3.2.8 Let S be selfmapping of a complete metric space (X,d) satisfying
the tnequality

d(Sz,Sy) < F(max{d(z,y),d(z, Sz),d(y, Sy),d(y, Sz)}),Ve,y € X

where F : RT™ — R™ is a nondecreasing continuous function such that F(t) <t for

each t > 0. Then S has a unique fized point. Moreover, for any zy € X, (Sxz,)

converges to the fized point of S where xpiy = Sxy,n=0,1,2,... .

Proof. Let T'" be the identity mapping in Theorem 3.2.5. Then all conditions

of Theorem 3.2.5 are satisfied and the Corollary is obtained. 0
The next result give some sufficient conditions to guarantee that four self-

mappings have a unique common fixed point.

Theorem 3.2.9 Let (X,d) be a complete metric space and let S,T,I,J : X —
X and S and I be commuting mappings and T and J be commuting mappings

satisfying the inequality
d(SI‘, Ty) < F(max{d(]x, ‘]y)a d([l‘, Sl’), d(‘]y7 Ty)}),Vx, y e X7 (7)

where F : RY — RY is nondecreasing continuous function such that F(t) <t for
eacht > 0. If TX C IX and SX C JX and if one of S, T, I and J is continuous,
then S, T, I and J have a unique common fixed point.

Proof. Let o € X and choose x; € X such that Szqg = Jx;, this can be
done since SX C JX. Next, choose o € X such that Txy = [x,, which can
be done since T'X C IX. In general, having chosen x5, € X choose 9,1 € X
such that Szs, = Jr9,,1 and choose x5,12 € X such that Txy,.1 = [x9,,5 for

n=/0;142,.v: Then

d(szm T$2n+1) (max{d([xgn, J$2n+1)7 d(IIZny S$2n)7 d(JI2n+17 T$2n+1)})

< F
< F(maX{d(sznA, Sﬂ?Qn), d(sznA, Sﬂ?Qn), d(5332m T372n+1)})
F

(max{d(Txa—1,S2), d(Sxon, TTon11)})

Ifo < d(TLE'Qn_l, SJIQn) < d(SIgn, TI2n+1), then d(Sl’Qn, T$2n+1> < F(d(Sl’gn, T132n+1))

< d(Swop, Tx9,.1) which is a contradiction. Hence for n = 1,2, ...

d(Swan, Txont1) < d(Swan, Ton—1) (8)
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and

d(Sl’Qn, T.'E2n+1) < F<d(Sx2n7Tx2n—1)) <9>

By (7), we have

d(5$2n,T9€2n—1) < F(max{d(]xgn, Jﬂ?zn—l), d([iUQm S$2n); d(JfE2n—1,T$2n—1)})
< F(max{d(T o1, S%on—2), d(T%2—1, S®2y), d(STan—2, T2n—1)})
< F

(maX{d(Tx%L—l; S$2n—2)7 d(T$2n—1; szn)})

IfO S d(Tl‘Qn_l, SIQn_Q) < d(T[EQn_l, S[L‘Qn), then d(S[EQn, TZEQn_l) S F(d(TfL’Qn_l, SZEQn))

< d(Tx2,-1, Sa,) which is a contradiction. Hence for n =1,2,3, ...
d(Swon, Twap 1) < d(TT2n-1, ST22) (10)

and

d(Sxay, Tron—1) < F(d(Tw2n-1, STon—2)) (11)

By (8) and (10), we have
d(Sxon—2, TTon_1) > d(Swan, TT2n—1) > d(Sxon, TTon+1) (12)

for all n € N.

Define
d(Sz,_1,Tz,) if n is odd,
< d(Sxp, Tx,—1) if n is even.
Then (a,)32, is a nonincreasing sequence of positive real numbers and therefore
has a limit L > 0. Suppose L > 0, then limy,_,, as, = limy_.o d(Sxop, Txop 1) = L

and limy o ao—1 = limy_ o d(Swo_o, Txop_1) = L.

By (11), we have
d(Szo, Twop—1) < F(d(Twor—1, STor—2)) (13)

by taking & — oo in (13) and by continuity of F', we have L < F(L) < L, which
is a contradiction, hence L = 0 and lim,,_,, a,, = 0.

Define
Tz, if n is odd,

Sz, if n is even.
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We shall show that the sequence (b,)5°, is a Cauchy sequence in X.
To show this, suppose not. Then there exists € > 0 and strictly increasing

sequence of positive integers (my) and (ny) with my > ng > k such that
d(bi,, by,) > € (14)

Assume that for each k, m; is the smallest positive integer greater than n, for
which (14) holds.
Casel. b,,, = Sz,,, and b,, = Sx,,. Then by (8) and (10), we have

€ < d(bm,,,bn,) = d(STpm,, Stp,) < d(STpmy, Ty 1) + d(T Ty -1, STy,)

< Gy, + € (15)
and

d(byysbn, ) = d(Sxpm,, St ) < d(STpmy,, TTmp+1) + ATy 1, TTpy 1) + AT, 11, Sy,
< i1 + ATy 41, Ty 1) + Anyga
< 2ap,41 + d(T%m; 110, Ty 11)
< 2an, 41+ AT Tmys1, STimy,) + (ST, Ty 41)
< 200, +1 + Qmy41 + d(STiny s Ty, 11)

< 3an,+1 + A(Swp,, Txp, +1)

< 3ay, +d(Szp,, TTp,+1) (16)
by (7) and (13), we have
d(‘sxmm Txnk-H) < F(max{d([xmkv an;ﬁ-l)? d([xmm Sw?ﬂk)’ d<ank+17 TxnkJrl)})
< F(max{d(Tm,—1, S%n, ), d(TTpm,—1,5%m, ), d(STp,, TTpn,+1)})
< F(max{d(Txy,, 1,5y, ), d(STn,, TTn, 11)})
< F(max{d(Txm,—1,5Tm, ) + d(Sxm,, Sn, ), d(STpn,, TTpn,+1)})
< F(max{d(Txn,—1,S%n,) + d(Sxm,, Sp,), d(STp,, TTpn,+1)})
< F(max{d(Tx,,—1, %y, ) + d(Sxm,, STn,)}) (17)
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By (16) and (17), we have

A(byy, bpy,) = A(STpy, STn,) < 3ap, + F(max{d(Tvy, 1, S%n, ) + d(STm,, STp,)})
< 3an,, + F(max{d(Txy,—1,5%,,) + d(Stp,, Sz, )})

< 3an, + F(max{a,, + d(Sxm,,STn,)}) (18)
Casell. b,,, = Sx,,, and b,, = T'z,,, Then by (12)

€ < d(bpmy,, bn,) = ATy, Txn,) < d(STpy, TTpmy—1) + AT -1, T2, )

<y, + € (19)

d(bpy, bp,) = d(Sxp,, Txy,) < d(STmy, Tm41) + AT 2y 41, SThpt1) + d(STp, 41, Txp,)
S amk—l-l + d(Txmk—i-l; S'T'rlk—i-l) + ank

< 2ap, + d(T%m,+1, STpy11) (20)

Ad(STpy 41, TTmy+1) < F(max{d(Izp, 11, JTmy+1), A(IZp, 11, SThpi1), d(J Ty 41, Ty 1) })
< F(max{d(Txy,,, Stp, ), d(TTn,, STny+1), d(STpmy, TTm,+1)})
< F(max{d(Sxp,, Trn,), Gnpt1; Gmy+1})
< F(max{d(Szp,,Try,),an,}). (21)

From (20) and (21), we have

d(bpy, bn,) = d(Sxp,, Txy,) < 2a,, + F(max{d(Stn,, Ty, ), n, })

< 2ay, + F(max{d(Sxm,, Txy,),an, }) (22)
Caselll. b,,, = T'x,,, and b, = Tz,,. Then by (12)

€ < d(bm,,bn,) = d(Txp,, Tr,,) < dTTp,, STm,—1) + d(STm,—1, T2y, )

<y, +€ (23)
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and

A(bimy, bny) = ATy s T2, ) < A(T %y, STinp+1) + A(STiy 41, STryt1) + A(STpy 11, Ty,
< Qpy+1 + A(STmps1, SThpt1) + Gyt
< 20, + d(STm; 41, STny+1)
< 2apn, +d(STmy 11, Tm, ) + AT Xy, STy +1)
<20y, + @py+1 + AT T, STn41)

< 3an, + ATy, STy, +1)- (24)
By (7), we have

Ad(Sp, 41, TTpm,) < F(max{d(Izn, 11, JTm, ), dIxp, 11, STpn+1), A(J Ty, T, ) })
< F(max{d(Txp,, STm,—1), d(TTp,, Stp,+1), d(STimy—1,Tm, ) })
< F(max{d(Txp,,Txm,) + d(Tm,, Stm,-1), d(TTp,, STn,11),

d(STmy—1,TTm, ) })
< F(max{d(Txp,, Txm,) + ATy, , Stm,—1),d(Txp, , STp, 11)})
< F(max{d(Txn, , Txm,)+ Gm,,Qnys1})

< Fd(Twy,, Txy,) + an,) (25)
by (24) and (25), we have
(b, bny) = ATy, T,) < 3an, + F(d(Txp,, Tam,) + an,)- (26)
By (15),(19) and (23) and limjy_, a,, = 0, we obtain that

lita-d(b3, S0, )= ¢! (27)

k—o0

By (18),(22) and (26) , we have ¢ < F(e) < e which is a contradiction. Hence
(bn)5e, is a Cauchy sequence in the complete metric space X and so has a limit v
in X. Thus the sequences (Sx2,)3% ) = (JT2,41)2% and (Two,—1)02, = ([29,)2,
converges to the point v.

Now, suppose I is continuous, we have lim,,_,oc 1229, = Iv and lim,,_,oc 1579,

= [v. Since I and S are commute, lim,,_o, SIzs, = Iv.
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By(7), we have
d(SIOCQm T$2n+1) < F(max{d([ngn, J$2n+1)7 d(szzm S[$2n)> d(J$2n+1, T332n+1)})-
By taking n — oo, we have

d(IU, U) < F(ma’x{d(lvv U)? d(IU7 [U)a d(“? U)}>
< F(d(1v,v)).

Thus [v = v. Again by (7),
d(Sv, Txony1) < F(max{d(1v, Jxo,1),d(Iv, Sv),d(Jxens1, TTons1)})-
By taking n — oo, we get that

d(Sv,v) < F(max{d(Iv,v),d(Iv, Sv),d(v,v)})
< P(d(v, 5v))

so Sv =w.

Since SX C JX, there exist t € X such that Jt = Sv = v and so
TJt=Tv=JTt (28)
since T" and J are commute. Thus

d(v,Tt) = d(Sv,Tt) < F(max{d(Iv, Jt),d(Iv, Sv),d(Jt, Tt)})
< F(d(v,Tt))

so Tt = v and from (28), we have Jv = Tv.
By (7), we have

d(v,Tv) = d(Sv,Tv) < F(max{d(Iv, Jv),d(Iv, Sv),d(Jv,Tv)})
< F(d(v,Tv))
so Tv =wv and Tv = Jv = v. Thus v is a common fixed point of S,7T, I and J.

If the mapping J is continuous instead of I, then the proof that v is again

a common fixed point of S, T, I and J is of course similar.
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Now suppose that S is continuous. Then lim,, o S%x9,, = Sv and lim,,_,oc ST,
= Sv. Since I and S are commute, lim, . [.Sx>, = Sv.

We now have
d(S2.T2n, T$2n+1) S F(max{d([ngn, JI2n+1), d([SZEQn, S2.T2n>, d((].%'gn+1, T$2n+1)}).
By taking n — oo, we have

d(Sv,v) < F(max{d(Sv,v),d(Sv, Sv),d(v,v)})
< F(d(Sv,v))

so Sv = wv. Since SX C JX, there exist w € X such that Jw = Sv = v and
TJw=Tv=JTw (29)
since T and J are commute. We now have
d(Sits0, Tw) < F(max{d(Lsn, Jw), d(Isn, Stan). d(Jw, Tw)})
take n — oo, we have

d(v, Tw) < F(max{d(v, Jw),d(v,v), d(Jw, Tw)})
< F(d(v, Tw))

so Tw = v and from(29) we have Twv = Ju.

Since
d(S*wy,, Tv) < F(max{d(ISzs,, Jv),d(ISTy,, S*xs,), d(Jv, Tv)}).
By taking n — oo, we have

d(Sv,Tv) < F(max{d(Sv, Jv),d(Sv, Sv),d(Jv,Tv)})
< F(d(Sv,Tv))

hence Sv =Tv and v =Tv = Jv.
Since T'X C IX, there exist y € X such that Iy = Tv = v and

Sly = Sv=18y. (30)
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Again by (7), we have

d(Sy,v) = d(Sy, Tv) < F(max{d(ly, Jv),d(ly, Sy),d(Jv,Tv)})
< F(d(v, Sy))

so Sy = v and from (30) we have [v = Sv = v. Thus v is a common fixed point
of S, T, I and J.

If the mapping 7' is continuous instead of S, then the proof that v is again
a common fixed point of 5,7, I and J is similar.
Finally, we will show that common fixed point of S, 7T, I and J is unique. Suppose

Sz=Tz=1z=Jz=zand Sv =Tv =1v = Jv=wv, then

d(z,v) = d(Sz,Tv) < F(max{d(Iz, Jv),d(Iz,Sz),d(Jv,Tv)})
< F(d(z,v))

so z =wv. Therefore S, T, I and J have a unique common fixed point. 0

Corollary 3.2.10 (cf. [4]) Let (X,d) be a complete metric space and let S, T, 1, J :
X — X and S and I be commuting mappings and T and J be commuting mappings

satisfying the inequality
d(Sz, Ty) < c-max{d(lz, Jy),d(Iz,Sz),d(Jy, Ty)},Vz,y € X,

where 0 < c¢ < 1. If TX C IX and SX C JX and if one of S,T,I and J 1is
continuous, then S, T, I and J have a unique common fized point.

Proof. Define F : RT — R by F(t) = ct for all ¢t € RT. Then F is
satisfied the condition in Theorem 3.2.9. Hence the corollary is obtained directly

by Theorem 3.2.9. U

Corollary 3.2.11 Let (X, d) be a complete metric space and let S, T, 1 : X — X and
S and I be commuting mappings and T and I be commuting mappings satisfying

the inequality

d(Sz, Ty) < F(max{d(Iz,Iy),d(Iz, Sx),d(ly, Ty)}),Vz,y € X,
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where F : RT — R is nondecreasing continuous function such that F(t) <t for
eacht > 0. If TX C IX and SX C IX and if one of S,T and I is continuous,
then S, T and I have a unique common fized point.

Proof. Let I = J in Theorem 3.2.9. Then all conditions of Theorem 3.2.9 are

satisfied and so S, T and [ have a unique common fixed point. O

Corollary 3.2.12 Let S and T be mappings of a complete metric space (X,d) into
itself satisfying the inequality

d(Sz, Ty) < F(max{d(z,y),d(z, Sz),d(y, Ty)}),Vz,y € X,

where F : Rt — R is nondecreasing continuous function such that F(t) <t for
each t > 0. Then S and T have a unique common fixed point.

Proof. Let I and J be the identity mapping in Theorem 3.2.9. Then all condi-
tions of Theorem 3.2.9 are satisfied and so .S and T' have a unique common fixed

point. [

Corollary 3.2.13 Let I and J be mappings of a complete metric space (X,d) onto
itself satisfying the inequality

d(z,y) < F(max{d(Ilz, Jy),d(Iz,z),d(Jy,y)}), Ve, y € X,

where F : RT — R™ 4s nondecreasing continuous function such that F(t) <t for
eacht > 0. Then I and J have a unique common fized point.

Proof. Let S and T be the identity mapping in Theorem 3.2.9. Then all
conditions of Theorem 3.2.9 are satisfied and so I and J have a unique common

fixed point. L]

Corollary 3.2.14 Let (X,d) be a complete metric space and let S, T, 1,J : X —
X and S and I be commuting mappings and T and J be commuting mappings

satisfying the inequality
1 1

for all x,y € X, where F' : RT — R is nondecreasing continuous function such

that F(t) <t for eacht > 0. If TX C IX and SX C JX and if one of S,T,1
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and J is continuous, then S,T, I and J have a unique common fixed point.

Proof. Let x,y € X, we have
d(Iz,Ty) < d(Ixz,Sx) +d(Sz,Ty)

< 2 max{d(Iz, Sz), d(Sz, Ty), d(Iz, Jy),d(.Jy, Ty)}
SO

%d(u, Ty) < max{d(Lz, Sz), d(Sw, Ty), d(Iz,Jy), d(Jy, Ty)}
and similarly

%d(Jy, Sw) < max{d(Iz, Sz), d(Sz, Ty), d(Iz, Jy), d(Jy, Ty)}.
Thus

d(Sz, Ty) < F(max{d(Iz, Sz),d(Sz, Ty), d(Iz, Jy), d(Jy, Ty)})
< F(max{d(Iz, Sz),d(Ix,Jy),d(Jy, Ty)})

Hence all the conditions of Theorem 3.2.9 are satisfied. Therefore the corollary is

obtained by Theorem 3.2.9. O

Corollary 3.2.15 (cf. [4]) Let (X,d) be a complete metric space and let S,T,1,J :
X — X and S and I be commuting mappings and T and J be commuting mappings

satisfying the inequality
1 1
d(S(I), Ty) <c- maX{d(I:p, Jy)? d([f]f, S[L’), d(‘]y7 Ty)7 §d(]£l?, Ty)v §d(‘]y7 SIE)},

forallz,y € X where0 < c<1. IfTX C IX and SX C JX and if one of S,T, I
and J is continuous, then S, T, I and J have a unique common fized point.

Proof  Define F': RT — R* by F(t) = ct for all t € RT. Then F is satisfied the
condition in Corollary 3.2.14. Hence the corollary is obtained directly by Corollary
3.2.14. OJ

Corollary 3.2.16 Let S and T be mappings of a complete metric space (X, d) into
itself satisfying the inequality

d(Sz, Ty) < F(max{d(z,y), d(z, Sz, d(y, Ty), %d(m, Ty), %d(y, S2)}),
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for all z,y € X where F : Rt — R" is nondecreasing continuous function such
that F(t) <t for eacht > 0. Then S and T have a unique common fized point.

Proof. Let I and J be the identity mapping in Corollary 3.2.14. Then all
conditions of Corollary 3.2.14 are satisfied and so S and T have a unique common

fixed point. 0

Corollary 3.2.17 Let I and J be mappings of a complete metric space (X,d) onto
itself satisfying the inequality

d(w,y) < Flnax{d(Ls, Jy), (T2, ), d(Jy, ), 5dLe,), 3Ty, 2)}),

for all xz,y € X where F': Rt — R" is nondecreasing continuous function such
that F(t) <t for eacht > 0. Then I and J have a unique common fixed point.

Proof. Let S and T be the identity mapping in Corollary 3.2.14. Then all
conditions of Corollary 3.2.14 are satisfied and so I and J have a unique common

fixed point. U
3.3 Fixed Point Theory of Composition of Mappings

Theorem 3.3.1 Let (X,d) be complete metric spaces and let (Y,d') be metric
spaces. If T : X =Y and S : Y — X satisfying the inequalities

d(Tz, TSy) < F(max{d(z, Sy),d (y, Tz),d (y, TSy)}) (31)

d(Sy, STz) < F(max{d'(y, Tx),d(z, Sy),d(z, STx)}) (32)

for all x € X and for ally € Y, where F : RT — RY is nondecreasing continuous
function such that F(t) < t for each t > 0, and if there is x € X such that the
sequence (y,), define by y, = T(ST)"'x converges, then ST has a unique fived
point in X and T'S has a unique fixed point in Y .

Proof. Define the sequence (z,,) in X by z,, = (ST)"z for n = 1,2, ....
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If d(xp, nt1) # d' (Yn, Ynt1), by (31) we have

Ty, Tnir) = d((ST)"x, (ST)"*2)

IN

F(max{d'(T(ST)" 'x, T(ST)"x),d((ST)"z, (ST)"z),
d((ST)"x, (ST)""'x)})

IN

F max{d,(%ﬂ yn-i-l)a d([)ﬁn, xn)7 d<xm xn—i—l)})

(
F(dl(ym ym—l))
(

d Yn, yn+1)'

Thus
d(xn7 mn—&—l) S d,(yna yn+1>' (33)

By (31), we have

d/(yn’yn—f—l) =d T(ST)n_lx7T(ST)nx)
max{d((ST)" 'z, (ST)"x),d (T(ST)"  x, T(ST)" 'z,

| /\

d(
E(
d’(T(ST)”’lzc, T(ST)"x)})
F(max{d(@n-1,20),d (Yn:Yn), d (Yn, Yns1)})
F(

max{d(zn—1,%n), d' (Y, Yns1)})-

I d(Yn, Yns1) = d(xn_1,2,), then d (yn, Ynr1) < F(d(xp_1,7,)).
If d'(Yn, Yns1) # d(xp_1,2y), we have d' (Yn, Yns1) < F(d(xp_1,2,)) < d(Tp_1,Ty).

Hence
d,(ynv yn-l—l) S d<mn—1a :L'n) (34)

and
d,(ymyn-i-l) < F(d(xn—l)xn))‘ (35)

From (33) and (34), we have
d(xm xn-{-l) S d(xn—lu In) (36)
and from (33) and (35), we have

d(xp, Tpy1) < F(d(zp_1,2,)). (37)
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It follows from (33),(34) and (36) that

d(l‘na xn—&—l) S d,(yna yn—l-l) S d<xn—1a xn) S d/(yn—la yn) S ce S d/(ylayQ) S d(l‘o, ZL’1>

so the sequence (d(x,,, T,4+1))52; and the sequence (d'(yn, Yn+1))5o, are nonincreas-

ing sequence of positive real numbers, hence they have limits.

00
n=1

We show that the sequence (d(x,,, Z,11))5>; and the sequence (d' (Y, Yn+1))
have the zero limit. Suppose lim,, ., d(z,,z,+1) = L > 0. By taking n — oo in
(37), we have by continuity of F' that L < F(L) < L, a contradiction, so L = 0,
hence lim, oo d(zp, Tp11) = 0. By (34), it implies that lim, .o &' (Yn, Yni1) = 0.
Let a,, = d(zp, xp11) and b, = d'(Yn, Yns1), Then lim, o a,, = 0 = lim,,_,« b, and
ap < by < ap_1 < by,

Next, we will show that (x,) is a Cauchy sequence in X.
To show this, suppose not. Then there exists € > 0 and strictly increasing

sequences of positive integer (my) and (ny) with my > ny > k such that
d(Zmy, Ty ) = € (38)

and my, is the smallest positive integers greater than n for which (38) hold.

Since d(x,, Zy41) — 0 as n — oo and

€< d($mk7$mc) < d(xmk’ xmk—1> + d(zmk—lv‘%nk)

IN

(xmka xmk—1> + €

d
S d(mk, $k,1> + €

we obtain that limy_, d(@m,, T, ) = €.

And we have

ATy, Ty, ) < ATy s T 1) + ATyt 1s Trg+1) + A(Tyi1s Ty )
<y, + A Tinyt15 Tg41) + iy,
< 26, + d(Tmy 11, Tny+1)
< 2ap, + dA(Tmyi1, Ty ) + ATy s Ty 1)

< 3ay, + ATy, Tnyt1) (39)
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and by (32),

d(xmkaxnk-i-l) = d((ST)m’“x, (ST)nk-i-lx)

IA

F(max{d (T(ST)™ ‘2, T(ST)"*x),d((ST)"*x, (ST)™* ),
d((ST)™ =, (ST)" " x)})

IN

F(maX{d/(ymk7 ynk+1)7 d(xnka xmk)? d<xnka xnkJrl)})
(

< F(max{d (Ymy Ynp+1)s A&ny., Ty ), Oy }) (40)

from (39) and (40), we have

d(xmm xnk) < 3ay, + F(maX{d/(ymm ynk+1)> d<xnk’ ka)’ ank})

By taking k — oo, we have € < F'(¢) < ¢, a contradiction. Thus (z,) is a Cauchy
sequence in X.
Since X is a complete and Y is convergent, (x,) has a limit in X, say z
and (y,) has a limit in Y, say w. By (31), we have
d(Tz,y,) = d(Tz,T(ST)" 'z)
< F(max{d(z,(ST)" 'a),d (T(ST)" 2z, Tz),d (T(ST)" 2, T(ST)" *x)})
< F(max{d(z, zn—1),d' (Yn—1,T2),d Yn—1,Yn) })-

By taking n — 0o, we have
d(Tz,w) < F(max{d(z, z),d (w, Tz),d (w,w)})
< F(d'(Tz,w)),
hence Tz = w. And by (32), we have
d(Sw, z,) = d(Sw, (ST)"z)
< F(max{d'(w, T(ST)" 'x),d((ST)" 'x, Sw),d((ST)" 'z, (ST)"z)})
< F(max{d'(w, yn), d(zn, Sw), d(xn-1,Tn)}).
By taking n — oo, we have
d(Sw, z) < F(max{d'(w,w), d(z, Sw),d(z, 2)})
< F(d(Sw, 2)),
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so Sw =z and so STz = Sw =z and T'Sw =Tz = w. Thus z is a fixed point of
ST and w is a fixed point of T'S.

Suppose there is 2’ € X such that STz = 2/ and z # 2.

By (31), we have

d(2',2) =d(STZ,ST=)
max{d (TZ',Tz),d(z,ST%"),d(z,5Tz)})

< F(
< F(max{d (T2, Tz),d(z,2")})
< F(d (T, T?))

< d(

T2, Tz)
and by (32), we have

d(TZ,Tz)=d (T2, TST=z)

IN

IN

(
F(max{d(z',STz),d (Tz,T7"),d(Tz,TSTz)})
F(max{d(',z2),d (Tz,TZ")})

E(

IA

d(#', 2))

so d(2',z) < F(d(Z,z)) < d(',2), a contradiction, hence z = 2’ and ST has a
unique fixed point.

Similarly, T'S has a unique fixed point. 0

Corollary 3.3.2 (cf. [5]) Let (X,d) and (Y,d') be a complete metric space. If
T:X —>Y and S:Y — X satisfying the inequalities

d'(Tx, TSy) < c-max{d(x,Sy),d (y, Tx),d (y,TSy)} (41)
d(Sy,STz) < ¢-max{d'(y,Tx),d(x,Sy),d(x,STx)} (42)

for all x € X and for ally € Y, where 0 < ¢ < 1, then ST has a unique fized
point in X and T'S has a unique fixed point in'Y .
Proof.  Define F' : RT — RT by F(t) = ct for all t € RT. Then F is satisfied

the condition in Theorem 3.3.1. and for x € X the sequence (y,) defined as in
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Theorem 3.3.1 is Cauchy sequence as seen in [5], so (y,) converges. Hence the

corollary is obtained directly by Theorem 3.3.1. 0

Corollary 3.3.3 Let (X, d) be a complete metric space. If S, T : X — X satisfying

the inequalities
d(T'z,TSy) < F(max{d(z, Sy),d(y,Tx),d(y. TSy)}) (43)

d(Sy, STz) < F(max{d(y, Tx),d(z, Sy),d(z,STx)}) (44)

for all z,y € X, where F': R™ — R is nondecreasing continuous function such
that F(t) < t for each t > 0 and if there is v € X such that the sequence (yn),
define by y, = T(ST)" "'z converges, then ST has a unique fized point and T'S
has a unique fized point. Further if fived point of ST is fized point of T'S, then S
and T has a unique fixed point.

Proof. By Theorem 3.3.1, we obtain that each of ST and T'S has a unique
fixed point. Now, suppose that ST and T'S have the same unique fixed point, say
z. Then STx = x and T'Sx = x. So (T'S)(Tx) = Tx and (ST)(Sz) = Sz, thus
Tx and Sz are fixed point of T'S and ST, respectively. By the uniqueness of their
fixed point, it follows that Tz = Sz = . OJ



