TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	:::
ABSTRACT	iii
LIST OF TABLES	iv
LIST OF ILLUSTRATIONS	X
ABBREVIATIONS	Xi
CHAPTER	xiii
I. INTRODUCTION	224
II. LITERATURE REVIEW	
A. Biology of dengue virus	<u> </u>
1. Viral proteins	3
1.1. Viral structural proteins	6
1.2. Viral non-structural proteins	6
2. Dengue attachment and entry into host cell	8
3. Structure of mature virion and viral assembly	9
B. Subtilisin-like proprotein convertases	11
1. Members of subtilisin-like proprotein convertase (SPCs)	14
family in mammalian cells	1.4
2. General structure of subtilisin-like proprotein	14
convertases	udin
3. Furin/SPCs localization and trafficking	14
4. Biochemical and enzymatic features of furin	n ¹⁶ /ersi
5. Implications of furin cleavage and flavivirus infectivity	I/
III. MATERIALS AND METHODS	19 V C
1. Virus and cell lines	22
2. Antibodies	22
3. Plasmids and competent cells	22
and competent cens	22

÷	4. Mutagenesis of dengue pr-M junction cDNA clones	24	
	4.1. Mutagenesis of the subclone plasmid	24	
	4.2. Mini- and midi-preparations of plasmid		
	from cultured E. coli	28	
	4.3. Screening of the subclone plasmids	28	
	4.4. Preparation of 1.3 kb Pst I fragment for the construction		
	of mutant 5' half-genome cDNA clones	29	
	4.5. Construction and characterization of mutant		
	5' half-genome plasmids	29	
	5. Construction of full-length cDNA clones containing mutations		
	of the pr-M junction	30	
	6. In vitro transcription and transfection of full-length RNA into		
	C6/36 cells	31	
	7. Detection of virus replication	33	
	7.1. Virus titration by focus immunoassay	33	
	7.2. Determination of focus size by 4-step focus immunoassay	34	
	7.3. Extraction of viral genomic RNA and amplification		
	of the prM gene by RT-PCR	35	
	7.4. Nucleotide sequence analysis	38	
	8. Determination of virus replication kinetics	38	
IV.	RESULTS	40	
V.	DISCUSSION	75	
VI.	SUMMARY	83	
REF	ERENCES	88	
APP	ENDICES	102	
	Appendix A Appendix B	103	
	rrama 2	104	
	Appendix C	106	
	Appendix D	114	
CUR	RICULUM VITAE	115	

LIST OF TABLES

TA	BLE	PAGE
1.	Comparison of pr-M junction of insect-borne flaviviruses and pr-M junction chimeras.	21
2.	Oligonucleotides for site-directed mutagenesis and mutant plasmid construction.	
3.	Specific primers for reverse transcription-polymerase chain reaction	25
4.	(RT-PCR) and nucleotide sequence analysis. Screening of the pBK (S1SP6-1547)Δ402 Pst I subclone mutant	37
~	plasmids.	42
5.	Screening of the 5' half-genome, pBK (S1SP6-4497)Δ402 Pst I, for the introduced mutations in dengue pr-M junction.	47
6.	Generation of mutant full-length cDNA clones following ligation	
7.	of the 5' half-genome plasmids with the 3' half-genome sequence. Expanded stock of prM mutant viruses.	51 60
8.	Alteration of focus size in prM mutant and chimeric viruses.	62

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

FI	GURE	PAGE
1.	Three recombinant plasmids for the generation of prM mutant	
	dengue viruses.	23
2.	Construction of the full-length dengue strain 16681 pr-M junction	
	mutant cDNA clone.	26
3.	Screening for intended mutations in the subclone plasmids by	
	restriction enzyme digestion and agarose gel electrophoresis.	41
4.	Purified 1.3 kb Pst I fragment of the four prM mutant subclone	
	plasmids.	43
5.	Determination of the orientation of the ligated 1.3 kb Pst I fragment	
	(nt 212-1535) in 5'half-genomes with Sph I and EcoR I.	45
6.	Determination of the orientation of the ligated 1.3 kb Pst I fragment	
	in the 16681pr(+7, -2) 5' half-genome by Sph I and EcoR I double	9//
	digestion and agarose gel electrophoresis.	46
7.	Characterization of the mutant 5' half-genomes by restriction enzyme	
	digestions and agarose gel electrophoresis.	48
8.	Determination of the orientation of the ligated 6.2 kb Kpn I fragment	
	in the full-length cDNA plasmid clone by Xba I and Hind III double	
	digestion and agarose gel electrophoresis.	50
9.	Characterization of the full-length cDNA clones containing intended	
	mutations of the pr-M junction by restriction enzyme digestions and	
	agarose gel electrophoresis.	52
10 A	. A full-length mutant cDNA clone linearized by digesting with Xba I.	53
	. Analysis of the capped in vitro transcripts of a mutant full-length	
	cDNA clone containing mutation at the pr-M cleavage junction.	53
11.	Production of infectious dengue viruses from C6/36 cells transfected	
	with various amounts of capped, in vitro transcripts of a full-length	
	dengue cDNA clone (16681 clone #5.2).	55

12.	Production of the 16681pr(+4, -0), 16681pr(+7, -2), 16681pr(+7, -0)	
	viruses from C6/36 cells transfected with capped, in vitro transcripts.	57
13.	Production of the 16681pr(+9, -0) mutant viruses from C6/36 cells	51
	transfected with capped, in vitro transcripts.	58
14.		50
	16681Nde(+), JEVpr/16681, 16681pr(+4, -0), 16681pr(+7, -2),	
	16681pr(+7, -0) and 16681pr(+9, -0).	63
15.	Amplification of the 2.3 kb region (nucleotides 134-2,504) of the prM	03
	mutant viruses by RT-PCR and analysis by agarose gel electrophoresis.	65
16.	The semi-nested PCR products containing the pr-M junction	
	(nucleotides 134-1518) of the prM mutant viruses.	66
17.	Confirmation of the intended mutations of the 13-amino acid region	
	proximal to the pr-M junction of dengue prM mutant viruses.	67
18.	Kinetics of virus production from C6/36 cells infected with the prM	
	mutant viruses, 16681pr(+4, -0), 16681pr(+7, -2) and 16681pr(+7, -0).	69
19.	Kinetics of virus production from PS cells infected with the mutant	A
	Viruses 16681nr(14 0) 16601 (17 0)	70
20.	Kinetics of virus production from C6/36 cells infected with the prM	, , ,
	mutant virus 16691 pr/10 0	73
21.	Kinetics of virus production from PS cells infected with the prM	
	mutant virus 16681pr(10, 0)	74

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

°C degree Celsius

(v/v) volume: volume ratio

(w/v) weight: volume ratio

 μ g microgram μ l microliter

μM micromolar

A adenine

 $\mathring{\mathbf{A}}$ Angstrom (10^{-10} m)

Ala or A alanine

anC anchor capsid protein

Arg or R arginine

Asp or D aspartic acid

bp base pair

BSA bovine serum albumin

C protein capsid protein

C cytosine

cDNA complementary DNA

CS conserved RNA sequence

cryoEM cryoelectron microscopy

Cys or C cysteine

DAB 3, 3' diaminobenzidine

DEN dengue virus

DEPC diethylpyrocarbonate

DF dengue fever

DHF dengue hemorrhagic fever

dNTP deoxyribonucleoside triphosphate

dsDNA double-stranded deoxyribonucleic acid

DSS dengue shock syndrome

DTT dithiothreitol

E protein envelope protein

EDTA ethylenediamine tetraacetic acid

ER endoplasmic reticulum

EtBr ethidium bromide

FFU or ffu foci forming unit

g gravity

G guanine

Gly or G glycine

gm gram

HEPES N-(2-hydrox yethyl) piperazine-N'-

(2-ethanesulfonic acid)

His or H histidine

HIV human immunodeficiency virus

hr hour

Ig immunoglobulin

JEV or JE Japanese encephalitis virus

k kilo (10³)kb kilobase

 $k_{\rm cat}$ turnover number

kDa kilo-Dalton

K_M Michaelis constant

LB Luria-Bertani medium

Lys or K lysine

M protein membrane protein

M molar

MESA MOPS-EDTA-Sodium acetate buffer

Met or M methionine

min minute

mg milligram milliliter

mM millimolar

mol mole

MOPS 3-(N-morpholino)propanesulfonic acid

ng nanogram nm nanometer

NS protein non-structural protein

nt nucleotide

PACE pair amino acid convertase enzyme

PBS phosphate-buffered saline
PC prohormone convertase

PCR polymerase chain reaction

pmol picomole

poly(A)⁺ polyadenylated

prM protein premembrane protein

RNA ribonucleic acid

RNase ribonuclease

rNTP ribonucleoside triphosphate

rpm revolutions per minute

RT-PCR reverse transcription-polymerase chain reaction

SDS sodium dodecyl sulfate

sec second

Ser or S serine

SPCs subtilisin-like proprotein convertases

T thymine

TAE tris-acetate-EDTA buffer

TBEV tick-borne encephalitis virus

TE tris-EDTA buffer

TGN trans-Golgi network

Thr or T theronine

Tm melting temperature

Tris tris(Hydroxymethyl)aminomethane

Tris-HCl tris(Hydroxymethyl)aminomethane hydrochloride

u unit

UV ultraviolet

Valor V valine
VC vitellogenin convertase
Vg vitellogenin
YF yellow fever

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved