Chapter 2

Orbital Dynamics of Particles

In this chapter, the fundamental interactions, required for constructing
the Activated Molecular Cloud Cluster Model, are presented. All interactions
will be referred again in Chapter 3 to describe the solar system formation.

2.1 The Keplerion Motion
The Keplerion motion or the elliptical motion of two masses under the

influence of their mutual gravity is generally considered as the two-body
problem. The system of two-body is shown in Figure 2.1.
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Figure 2.1 Keplerion motion or elliptical two-body system.

The center of mass of both particles is taken as the origin of system. The
coordinate vector 1; and r, can be defined by combining the equation

mY, +myr, =0 (2.1)
with r =r, —r,, then
m
T, = 2 _r
my +m,
(2.2)
m




If there is no external forc

€ acts on the system, the total angular momentum of
the system is conserved:

L, = r,xp, = constant (2.3)

i=1

Its magnitude can be written alternatively as

= IL[ = m,,r,fzé"+m2[r2l26"

(2.4)
Substituting by Equation 2.2, gives
?= pré (2.5)
where 4 is the reduced mass,
mym
p=—"12 (2.6)
m +m,

The general solution

of the system can be solved from the conservation
of energy relation:

E=T+U
- % K +6%) + U () @
= constant
or
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E=—w*+——_ L U(r 2.8
e 2 () (2.8)

Solving Equation 2.8 for » » We have

._dr |2 3 e
r—E—i\/;[E—-U(r) 2#/‘2) (2.9)

This equation has two roots that give 7 =
are known as the turning point of motion.

We can write the e
relation

0; for elliptical orbit, these two roots

quation of path in terms of 7 and @ by using the

dr (2.10)



Then, substitute é:iz- from Equation 2.5 ang 7 from Equation 2.9 mto
Ly

Equation 2.10 with Integration, we have

60)= | 8/ r))dr
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/ ¢

2l E-U(r)—

#( (r) 2ﬂr2J

For the motion in gravitational field, the potential energy term ig

U(r)z—£

(2.12)
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Where k = Gmym, . Then the Equation 2.11 becomes

9(r)=j L/ r*)ar

T ———=——— { constant (2.13)
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Integrated by using the new variabje u( = i)
Ia

gives

: (2.14)
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Equation 2.15 is the e
latus rectum 2¢. The
lustrated in Figure 2.2.
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Figure 2.2 Graphs of a conic section with various eccentricities.

The orbital motion, which is of interest to us, is the elliptical motion
where 0 <& <1. This motion belongs to the Kepler’s laws of planetary motion,
$0 we can call it the Keplerion motion. The turning points of motion (7, and

Fmar) can be derived from Equation 2.15 by taking #=0 and O=nx
respectively. Thus
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The radius of orbit extends back and forth between these two points. This
behavior is called the radial pulsation with the pulsating period 7, given by

’1,'2 _ 472'2613
G(m; +m,)

(2.18)




where a is the semi-major axis of orbit. Equation 2.18 is usually called the
Kepler’s third law of planetary motion.

The pulsation behavior is more obvious, when we look at a ring-
construction system of particles, which all particles orbit about the central mass
elliptically. Every particle has the same initial angular velocity @, at the radius

equal to 7, and their semi-major axes are laid in different angles. The
sequence of particles motion with time is shown in Figure 2.3.
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Figure 2.3 A ring of Keplerion particles moving elliptically back and forth
around the central mass illustrates a radial pulsating system.

The radial pulsation concept will be used in Chapter 3 to describe the
behavior of collapsing objects in a primordial solar system.

2.2 The Orbital Elastic Collision

In general, the elastic collision between two particles is usually the
linear collision where linear momentums are exchanged. This section, we will
concentrate on an elastic collision between the two Keplerion particles; each
particle carries a linear momentum in both radial and azimuthal component, as
shown in Figure 2.4. However, the two components are independent, so we can
apply the method of linear collision to deal with both components.
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Figure 2.4 The two components of linear momentum.

It will be more convenient if we use the center-of-mass (CM) coordinate
system to describe the collision, as illustrated in Figure 2.5. Although the
velocity of each particle is not constant throughout its orbit, the velocity of
collision is certainly to be able to use the velocity at a collision point.

Figure 2.5 The projection paths illustrate the motion of particles in CM system.
For CM system, the CM coordinate R is defined by the relation

mr, +m,r, =(m, +m,)R (2.19)




I1

Differentiating with respect to time gives us the velocity relation

mu; +myu, = (m; +m,)V (2.20)
or
v=_1h u, 2 u, (2.21)
m, +m, m, +m,

where V=R is the velocity of CM and u, =¥, is the original velocity that

represents both radial and azimuthal component.
From Figure 2.6, the velocity of particles in CM system are given by

uy=u-V 2.22)
uw,=u,-V '
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Figure 2.6 Motion of two particles in the Lab and CM frames.
In CM system, the total momentum of the two particles is zero:
muy +myusy = mvy +m, vy =0 (2.23)

where V' is the velocity of particle after collision in the CM frame. From this
equation, we have '

i
r 1 r
u, R u,
2
(2.24)
r m] !
iy

In an elastic collision, the energy is also conserved in both Laboratory and CM
system. We can write
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]:'Jefore + Ube_fore =T after + Ua_fter
S+ Sl < Loy
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(2.25)

Lo lvif
2- 2]v2
where U,,,, =U,,, atcollision point. Substituted by Equation 2.24 yields

-l
i) o

The directions of recoil particles must be opposite, so

vi=-u =V-u,
(2.27)

r__ P _
V,=-u,=V-u,

Using Equation 2.22 to transform the velocities in CM system to Laboratory
system, we have

V=V +V=2V-u,
, (2.28)
V, =V, +V=2V_u,
Substituted V from Equation 2.21 into 2.28 and rearranged gives us
m, —m, 2m, ‘
v, = u, + u, (2.29a)
my +m, m +m,
and
v, =( 2m, Ju] _(M}.Z (2.29b)
my +m, my + m,

the recoil velocities of the two particles in Laboratory system.

Now we use the Equation 2.29a and 2.29b to determine the recoil
velocities of particles in each component to find the new quantity of the
angular momentum and the total energy. Note that, first things we must know
about the system are the original values of the angular momentum and the total
energy of particles.

Radial Velocities

The original velocity of particles in radial component at the collision

point can be determined from Equation 2.9 by substituting U/ = K , we have
F
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Then the recoil velocity of particles become

A
rec _ m] - mz ori 2m2 ori
¢ rad — Uy rad + iy rad
and
\ \
( rec) _ 2m1 ( orr') m] _m?_ ( ori)

V2 Jrad T R Yy Jrad

m] + n’l2 ) mI + m2 J

Azimuthal Velocities

(2.30a)

(2.30a)

(2.31a)

(2.31b)

We can determine the original velocity of particles in azimuthal

component from the angular momentum relation (Equation 2.5)

¢ = ur®@ = constant

(2.5)

which constant until the collision begins. The azimuthal velocities are,

therefore,
farl’
(ulorr )az‘. — (o]on — 1
myr
and
. farr
(uarr) ) _a)onr____ 2
2 Jozi 2
m,r

and

(2.32a)

(2.32b)

(2.332)

(2.33b)
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Angular Momentum and Total Energy of Particles

The angular momentum of both particles are given by multiplying
Equation 2.33a and 2.33b with m» and m,» respectively, and then, rearranged

by using Equation 2.32a and 2.32b, we have

e = (—_’"1 Lo Je‘;"’ + [ 2 Jf‘;_” (2.34a)
m; +m, m +m,
and
05 :[ 2, Jf‘,’” = (~—m' — }zg”’ (2.34b)
m; +m, m +m,

The total energy after collision can be defined in terms of momentum
and potential energy as

2

rec

2

: 1 rec
E:ec:lpx +_-€’ 5
2 2w

+U.(r) (2.35)

where p* is the radial momentum of recoil particle determined by the same
manner as angular momentum. Thus

re ny —m ori 2m ri
p= (__1 : JP: +( 1 in’ (2.362)
my + m, my+m,
and
rec 2m ori ny —m ri
R A
my + m, m + m,

After collision, the total energy of each particle may changes but the
sum of them is always constant.

E" + EJ" = E* + EJ° = constant (2.37)
The changing of angular momentum and total energy gives particle a new orbit

that will be mentioned in Chapter 3.

2.3 Motion in the Resisting Medium

The motion of every object must be retarded in the resisting medium.
The retarding force is generally proportional to velocity and cross-sectional
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area of the object. Although the exact equation of the retarding forces is more
complicated, the power-law approximation is still useful in many cases (Jerry,
1995); it can be written as

F,

retard

" Y (2.38)
v

where k& is a positive constant and — is a unit vector in the direction of
1%

velocity v.

Experimentally, for a relatively small object moving in air, n=1 for
velocities less than about 24 m/s and n=2 for higher velocities up to the
velocity of sound (~330 m/s). For higher above these ranges, the retarding
force is linearly proportional to velocity or n=1 again. The example of
retarding force, which #n =2 can be expressed as

Fe-topdY (2.39)
2 g

where ¢ is the dimensionless drag coefficient, p is the air density and A is the

cross-sectional area of the object. This equation is known as the Prandtl
expression for the air resistance (Jerry, 1995).

In general, the motion of the object is attenuated in the component
where the retarding force exists. However, in the non-stationary medium, the
motion of the object may be whether attenuated or enhanced during its journey.
In this case, the retarding force can be expressed in term of relative velocity
between the object and the medium, thus for the Keplerion motion

(2.40)

where u is the velocity field of the medium. We can solve this equation by
numerical calculation; the results of simulations are shown in Section 4.2.

2.4 The Tidal Induction

The tidal induction is the interaction between two clusters of particles,
which are moving with Keplerion orbit relative to each other as illustrated in
Figure 2.7.
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Figure 2.7 Two particles clusters, moving with Keplerion orbits and interact
each other with tidal force.

The equation of motion of particle i in cluster A is given by

d’r, 8 Gm, ¥ Gm,
L= X, — X, (2.41)
dr’ gnﬁ 2 mo

J#i

where N, and N, are the total number of particles in cluster A and B
respectively. For the rotational frame of reference, the equation of motion can

be written as
d’r] dr,
dtt  dr?

—20xXK-ox(@xr)-oxr (2.42)

where @ is the angular velocity of the system varying with time. The both
equations can be solved by numerical calculation; the simulations are already
shown in Section 4.3.

From Equation 2.42 above, we see that the motion of particle is
influenced by the gravitational and the rotational forces. The interaction can be
classified by its strength into two kinds: high-density-regions induction and
mass transfer. The strength itself depends on many variables such as the mass
of clusters (M, and M 5 ), the total distance R, the angular velocity w, etc;
every variable except mass are time dependent. We can determine which
interaction will be taken place by using the Lagrange points of the system. The
Lagrange points represent the points that all relevant forces are equilibrium as
shown in Figure 2.8.
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Figure 2.8 Contour of equipotential and Lagrange Points L, — L;.

The interactions can be distinguished by considering the size of each
cluster when they reach the pericenter of orbit (R =r,. , Equation 2.17). At this
position, if the radius of cluster approximately approaches to the point L,, the
particles at the rim of cluster can move through this point; the mass is
transferred. If it does not, the high-density-regions induction can be occurred
instead.

All Lagrange points (L, —L;) can be determined by approximated that
the gravitational and the centrifugal term in Equation 2.42 are dominate;
because at pericenter the angular velocity @ is maximum while the angular

acceleration @ is zero (the azimuthal force vanishes) and the Coriolis term is
not included. Therefore, the net acceleration in x and y axis are given by

12 GMA(x+a)3 ] Gf’kﬁa(x—b)3 ra? x (2.43a)

(x+a)+y)?  ((x=b)*+y*)?

and

—— GM ,y - GMpy = a)fmy (2.43b)

& 3 3
((x+a)* +y")?  ((x=b)"+y")?

where
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R
= =
1+—4
X . (2.44)
b= o
1+—%
A

J

are the distance from CM of the system. The angular velocity from Equation
2.51s

ot L (2.45)

Substituting @ and y =0 into Equation 2.43a we have

GM , GM, 5
- =+ 5o 0, X
(x+a)” (x—b)

g = (2.46)

At Lagrange points g, = g, =0 then the solutions in x-axis for L, — L; are
{x15 %5, %3, %4, %5 } (2.47)
From Figure 2.8 x, and x, are the same, substituted x in Equation 2.43b by x,

or x; with g =0 gives

{ys,¥s} (2.48)

Combining the solutions from Equation 2.47 and 2.48 gives the positions of
Lagrange points

L, =(x,0) ‘

L, =(x,,0)

Lo (90,0) } (2.49)
L,=(x;,¥4)

Ls = (x5, 5))

However, the Lagrange Point we interest is L,; it indicates that what
interaction can be taken place. For the high-density-regions induction, the
particles in both clusters can be induced in the regions between the Lagrange
points (L,, L, and L,) and the center of clusters (see Section 4.3).



