Chapter 4

Dynamical Simulations

This chapter presents all simulations that are required for modeling the
solar system formation in Chapter 3. The simulations are generated by the
mathematical program Maple 9. This program has more powerful tools to
simulate a small dynamical system which already known equation of motion.
Almost all simulations in this chapter are the constructing system of nonlinear
second-order differential equations, which must be solved by numerical
method. For this work, the Runge-Kutta method, provided by Maple, is ﬂpphed
with more accuracy and precision. The aspect of Maple 9 classic worksheet is
shown in Figure 4.1 below.
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Figure 4.1 Maple 9 classic worksheet with “implicitplot3d” command.

The units that are used in all simulation are the unit of the Earth: the
length 1s in Astronomical Unit (AU), the time is in year (vr), and the mass js in
Earth Unit (EU). Then the gravitational constant is
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G=6.67x10" N.m?[kg*
=6.67x107" m?*/kg - 5

[ AU .
1.495979 x 10"

FU J[ yr g
5.976 x10% } \ 365x24 x 60x 60

=6.67x107"

(4.1)

=1.184x107" 4U*/EU - yr?

These units are more useful than SI units in that the number involved is much
less.

4.1 The Orbital Elastic Collision
4.1.1 New Orbit of Particles

After collision, each particle will have a new orbit, which carries new
angular momentum and total energy. From Section 2.2, we can determine a
new orbit of particle by using the Equation 2.16 to find o and &, then
substitute into

a
y =
1-gcos(d —¢@)

(4.2)

where ¢ is the phase angle of orbit relative to the x axis.
Firstly, we must know the collision points that two orbit are intersected
by solving equation
1(6)=1,(8)=0 (43)
for &. This equation can be solved easily by the command “solve() ;” in
Maple. The solution must be two real values or two imaginary values if the
orbits are not intersected. We can check these solutions by plotting as shown in
Appendix (New Orbits of Particles). Note that, the solve command can be

executed only when one of phase angle is set to be zero. All processes of
evaluating the new orbits are presented as a chart in Figure 4.2.
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Figure 4.2 The processes of evaluating the new orbit of particies.

The simulation results of orbital collision between

particle] — m, =0.5, 7" =1.0, g =0.40 (4.4a)
and
particle2 —>m, =1.0, £5'=1.0, &, =0.85 (4.4b)

moving around central mass M =G~ =844595EU with various phase
difference A¢ are shown in Figure 4.3.

All simulation results show us that the new orbits depend on phase
difference or, in the other hand, the orientation of original orbits. The angular
momentum of recoil particles, however, is independent with orbital orientation:
from this simulation £°” =1.0 and £ =0.2 for all cases. Therefore, it is a
good quantity for indicating how close the particle does from the center.
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Figure 4.3 Simulation results of orbital collision between two particles. The
original orbits are presented by thick line; the fixed-bigger ellipse is of particle
1. The thin dash line and the thin solid line are the new orbit of particle 1 and
particle 2 respectively. The coilision point is enclosed by a small circle.

4.1.2 Two-Real-Body Approach

The orbital elastic collision between two spherical bodies, radius ¢ and
mass m, and m,, can be simulated by adding the force of rigidity to the
equation of motion. This force is repulsive that switch from 0 to o at the
surface of the object (Figure 4.4); it presents the rigidity or the
mcompressibility of real object.
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Figure 4.4 Graph of the force of rigidity.

It will be more convenient if we fix the massive central mass at the
origin. The Keplerion motion of both objects around the center can be
considered as the motion of test mass. The equation of motion of both objects
can be written as
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dr, GM Gm,
=——r + I, )—— 4.5
df2 j},13 I f( 32) (13 F, ( G)
and
d’r. GM Gm
drzz =u?r2 +f(1']2)—(13—‘r21 (4.5b)
where
0 ,jr >a
S(r)= (4.6)
o0 ,MS a

15 the rigidity factor or switching function.
In computation, the program can not compute at oo, so it is sufficient to

use some large number, ~10°-10%: note that, this value must be considered as
proportional to the radius a of particle. The switching function F(r) can be
assigned in Maple as

>fi=r->piecewise (r<=a,le6,1) ;

The codes can be executed faster if we use the rectangular coordinate or
in term of x and y. Thus, the equation 4.5a and 4.5b can be written as

d*x GMx Gm,(x, —x .

dl,zl 7 1 3t iz ; 2)f(\/(x, ~x)" + () _}’2)2) (4.7a)
(x5 +y7)?

d? GM; Gm, (y, —

eI OO T G- (@)
(xf + )2

and
d’x GMx Gm, (x, —
dtzz ~ ¢ 2 3¢ 2(032 XI)f(\/(xl -x,)? +( _J’z)z) (4.8a)

(x2 + y3)?

d’ GM) G ~3)
dt{l —_ y2 E + m2(j:§ y])j(\/(x]_x2)2+(y]““y2)2) (48b)
(03 + ;)

Finding the initial conditions, which can bring both particles collide at
collision point, has a bit of difficulty. However, it can be shown as a processing
diagram in Figure 4.5.
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Figure 4.5 Processing diagram of finding initial conditions before collision.

Collision between two real objects radius a=0.05, phase different
A¢=45, and the rest of initial conditions are the same as the particles in

Section 4.1.1, can be simulated with the results illustrated in Figure 4.6.
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Figure 4.6 Simulation result of two-real-body collision radius @ = 0.05, phase
different A¢ =45, and with the same initial conditions as the particles in

Section 4.1.1. Original orbits are shown in dash line.
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The result of this simulation is look like the result in Figure 4.3, in the
case of Ag=45. However, the angular momentum is not totally transferred;

this may be the effect of dimension of the objects.

4.2 The Orbital Motion in the Resisting Medium

4.2.1 Coplanar Motion

From Section 2.3, equation of motion of the object moving in a rotating
disk cloud can be written as

2
d;:hG];Jr_lcpA|v_ulz (v—u) (4.9)
dt r 2 m v —u
or
2
Q“n%r—lﬂ|v~ul(v—u) (4.10)

dit 2 2 m

Here we use the Prandtl expression to express the retarding force.

We cannot simulate this interaction, however, by the real conditions,
even we can estimate, because it may take long time to run on personal
computer. Thus, the suitable conditions are decided to use for appreciating this
interaction with careless about the real system.

It will be more convenient if we define a new coefficient x by

k=4 (4.11)
2 m

and the velocity field u by

u:J%(—»sianw%cos@ff)
I4

C) G4, |mLsy. o AAZ 1, (4.12)
Jx2+y2 \/x2+y" \/x2+y2

VGM y I ~GMx .

\
3 3
P+ (Pt

The aspect of rotating disk cloud with this velocity field is shown in Figure 4.7.
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Figure 4.7 Rotating disk cloud and velocity field.

Then, Equation 4.10 can be written as

dx

dt

NGM y
%

(x? +y*)4

Q_ VGM x

dt 3

(x*+ )

dx

dt 3
\ (x* + y*)?

Q_ NGOGM x

(x? +y*)*

VGM y

di 3

(4.13a)

(4.13b)

Simulation result of the system, which central mass M =G 'EU,

d*x 1 GMx
drr 3
(x* + y*)?
and
d’y GMy
dr? 3
(" +y")?
x=02 and

launching object

at x=2,y

v, =0, v, = 0.5, is illustrated in Figure 4.8.
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Figure 4.8 Simulation result of motion in resisting medium, x=0.2, from
t=01tor=100yr.

From this simulation, we see that the orbit of the object is decreased and
adjusted 1o be more circular belong to the velocity field direction. As
mentioned 1 Section 3.3.2, the orbit of planet may be adjusted by this process.
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4.2.2 Non-Coplanar Motion

The object, which moving through a plane of resisting medium, will be
mainly retarded in vertical component, because there is no velocity field in this
component. Thus, the effect of retarding force is proportional to the thickness
of the disk. The simulation must be considered in three dimensions then the
equation of motion can be written as

d'x____ GMx _x| L, JCMy Jdx, ~GMy Disk(z) (4.14a)
dr’ 2 2 2 % dt 2 2 2 ar 2 2 %
(x"+y +z7) (x”+ %) (x*+ %)
dy___ GMy _ dy NGMx | dy  NGMx_ Disk(z) (4.14b)
dr* 2 2 2 % dt 2 2 % dt 2 2 % |
(x"+y"+2z%) (x* + %) (x*+y%)
and
2_
z_ M 3 —Kﬁ[fjmsk(z) (4.14¢)
di (4 % 4 27)? di |\ di
where
0 ,z A thickness
Disk(z) = F (4.15)
1 1< thickness
o R

The purpose of defining function Disk(z) is to specify the boundary of the
rotating disk; for example, the retarding force vanishes when |zl > thickness/2.

Simulation result of the system, which central mass M =G 'EU,
x =0.2, thickness 0.24U , and with the object launched at x = \@,y =0,z=1
(or inclined 30 degree) with initial velocities v, =0,v, =0.5,v,=0, is
illustrated in Figure 4.8.
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Figure 4.9 Simulation result of non-coplanar object moving through a disk of
resisting medium, x = 0.2, thickness 0.2A4U, from 1 =0 to 1 =200yr.

This result shows us that the role of resisting medium can also bring
non-coplanar motion into a plane together with more circular. Therefore, the
coplanar motion of planets may be induced by this process, as mentioned in
Section 3.3.2.

4.3 The Tidal Induction

Simulation of tidal induction between two clusters of particles can be
constructed by reducing many-body system to be a system of three-body. The
reason 1s to decrease the time used in simulation and, furthermore, gravitational
interaction between particles can be neglected when the tidal induction begin.
The aspect of the system is shown in Figure 4.10.
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Figure 4.10 Two clusters before interactin g each other with tidal force.

The equations of motion of cluster M,, M, and the test mass can be
written as

dz)f‘:—— GM, (X, = X3) - (4.16a)
O -y eg-ny)
T __ SLEICAEY (4.16b)
W (KX e -vy )
EX, _ GM(X,-X,) (4.17a)
WX -x) -
it q G\, - 1) (4.17b)
S G )
and
d23c:_ GM,(x- X)) . GM,(x—-X,) : (4.180)
R O S 0 B O IR
cjf:_ GM\(y-Y)  GM,(y-Y) (4.185)
7
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In this simulation, the mass of both cluster are set to be equal,
M,=M,=»M; the Lagrange point L, is therefore at ongin. The initial

condition of test masses are given by the ring construction conditions that
construct the test masses as a ring around mass M, and M, with initial

velocity given by the circular velocity:

s 3 g (4.16)

rring

After both clusters have launched, the interactions begin as they
approach the pericenter. The tidal induction is dominated, whether high-
density-regions induction or mass transfer can occur. The simulation of high-
density-regions induction can be constructed by using two clusters mass

M =0.1G™" EU, radius a=0.44,0.45 and 0.46AU (three rings), launched at
X, =5Y=0 and X,=-57Y,=0 with velocities u, =0,y =0.035 and
u, = 0,v, =—0.035. These conditions give us two elliptical orbits, which equal
eccentricity ¢, =&, =0.75 and pericenter 7., =7r,., = 0.714 > a. Simulation
results are shown 1n Figure 4.11.
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Figure 4.11 Simulation result of high-density-regions induction of two equal
mass clusters; the rings construction of particles are collapsed into two regions.

In the case that both clusters are different in mass and size, the tidal
induction may stronger when they close together. This case is similar to when
the protoplanet reached its pericenter near protosun; the protoplanet may be
induced to collapse strongly into two regions. The simulation can be

constructed by using the cluster mass M, =0.01G™" EU, radins « =0.098,
0.100 and 0.102A4U (three rings), launches at X, =10,Y,=0 and moves
elliptically with & =0.61 around mass M, =G~ EU, which is fixed at the
origin. The close-up view simulation of cluster A, is shown in Figure 4.12.
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Figure 4.12 The close-up view simulation of cluster A, the particle rings are

strongly collapsed into two regions.

In the real system, the collision of particles in both interactions must be
produced heat, which can melt them together; the mass will be clumped as a
molten chunks. These molten chunks may form protosatellites around
protoplanet.



