

TABLE OF CONTENTS

		Page
ACKNOWLEDGEMENT		iii
ABSTRACT (ENGLISH)		iv
ABSTRACT (THAI)		v
LIST OF ILLUSTRATIONS		viii
ABBREVIATIONS AND SYMBOLS		x
Chapter 1 Introduction		
1.1 Historical Review of Solar System Formation	1	
1.2 Gross Features of the Solar System	3	
1.3 Purpose and Scope of This Work	4	
Chapter 2 Orbital Dynamics of Particles		
2.1 The Keplerion Motion	5	
2.2 The Orbital Elastic Collision	9	
2.3 Motion in the Resisting Medium	14	
2.4 The Tidal Induction	15	
Chapter 3 Activated Molecular Cloud Cluster Model		
3.1 Formation of Molecular Cloud Cluster	19	
3.2 Activated Molecular Cloud Cluster Model	20	
3.3 Model Features		
3.3.1 The Angular Momentum of the Sun	24	
3.3.2 Orbital and Rotational Properties of Planets	29	
3.3.3 Formation of Satellites	32	
3.3.4 Terrestrial and Jovian Planets	33	
3.3.5 Rotation of Solar System	33	
3.4 Summary	34	
Chapter 4 Dynamical Simulations		
4.1 The Orbital Elastic Collision	37	
4.1.1 New Orbits of Particles	37	

	Page
4.1.2 Two-Real-Body Approach	40
4.2 The Orbital Motion in the Resisting Medium	44
4.2.1 Coplanar Motion	44
4.2.2 Non-Coplanar Motion	47
4.3 The Tidal Induction	48
Chapter 5 Conclusion and Discussion	54
REFERENCES	55
APPENDIX Maple Codes for Dynamical Simulations	56
CURRICULUM VITAE	73

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
 Copyright[©] by Chiang Mai University
 All rights reserved

LIST OF ILLUSTRATIONS

Figure	Page
2.1 Keplerion motion or elliptical two-body system.	1
2.2 Graphs of a conic section with various eccentricities.	8
2.3 A ring of Keplerion particles moving elliptically back and forth around the central mass illustrates a radial pulsating system.	9
2.4 The two components of linear momentum.	10
2.5 The projection paths illustrate the motion of particles in CM system.	10
2.6 Motion of two particles in the Lab and CM frames.	11
2.7 Two particles clusters, moving with Keplerion orbits and interact each other with tidal force.	16
2.8 Contour of equipotential and Lagrange Points $L_1 - L_5$.	17
3.1 A simple molecular cloud that has two high-density regions.	19
3.2 A typical cluster of galaxies.	21
3.3 (a) High-density-regions induction between two galaxies. (b) Collapsing of molecular cloud cluster in high-density region.	22
3.4 The primordial solar system with a protosun at the center surrounded by protoplanets and the atmospheric materials.	22
3.5 (a) The Oort cloud and some cometary's orbits. (b) The Kuiper belt, the origin of short-period comets, locates beyond the Neptune's orbit.	24
3.6 The relation between the angular momentum of recoil particles ℓ^{rec} and their original angular momentum ℓ^{ori} with mass ratio m from 0 to 1.	27
3.7 Hollow sphere of materials ejected from the Sun.	31
3.8 Retrograde rotations of induced high-density regions against rotation of system.	34
3.9 Rotation of solar system compared to galaxy is retrograde. Note that the spin of galaxy does not belong to the right-hand rule.	34
4.1 Maple 9 classic worksheet with "implicitplot3d" command.	36
4.2 The processes of evaluating the new orbit of particles.	38

Figure	Page
4.3 Simulation results of orbital collision between two particles. The original orbits are presented by thick line; the fixed-bigger ellipse is of particle 1. The thin dash line and the thin solid line are the new orbit of particle 1 and particle 2 respectively. The collision point is enclosed by a small circle.	39-40
4.4 Graph of the force of rigidity.	40
4.5 Processing diagram of finding initial conditions before collision.	42
4.6 Simulation result of two-real-body collision radius $a = 0.05$, phase different $\Delta\phi = 45^\circ$, and with the same initial conditions as the particles in Section 4.1.1. Original orbits are shown in dash line.	42-43
4.7 Rotating disk cloud and velocity field.	45
4.8 Simulation result of motion in resisting medium, $\kappa = 0.2$, from $t = 0$ to $t = 100\text{yr}$.	45-46
4.9 Simulation result of non-coplanar object moving through a disk of resisting medium, $\kappa = 0.2$, thickness $0.2AU$, from $t = 0$ to $t = 200\text{yr}$.	47-48
4.10 Two clusters before interacting each other with tidal force.	49
4.11 Simulation result of high-density-regions induction of two equal mass clusters; the particle rings are collapsed into two regions.	50-51
4.12 The close-up view simulation of cluster M_1 , the particle rings are strongly collapsed into two regions.	52-53

ABBREVIATIONS AND SYMBOLS

AU	Astronomical Unit ($1.495979 \times 10^{11} m$)
EU	Earth mass Unit ($5.976 \times 10^{24} kg$)
G	Gravitational constant ($1.184 \times 10^{-4} AU^3/EU \cdot yr^2$)
ε	eccentricity
kg	kilogram
m	meter
N	Newton
ϕ	phase angle of ellipse
θ	angular coordinate of ellipse
yr	year

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
 Copyright[©] by Chiang Mai University
 All rights reserved