TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	v
THAI ABSTRACT	vii
LIST OF TABLE	x
LIST OF ILLUSTRATIONS	xiii
LIST OF ABBREVIATION	xvi
CHAPTER I INTRODUCTION	1
CHAPTER II MATERIALS AND METHODS	43
CHAPTER III RESULTS	67
CHAPTER IV DISCUSSION AND CONCLUSION	87
REFERENCES	89
APPENDIX	95
CURRICULUM VITAE	122

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

TAE	BLE	PAGE
1	Physical properties of carbon monoxide	2
2	Organs damaged by carbon monoxide and the pathological lesions	8
3	Antioxidant defense systems with enzymes and their roles in	34
	prevention of cell damage by cytotoxic O2 species	
4	Antioxidant defense systems with substances and their roles in	35
	the prevention of cell damage by cytotoxic O2 species	
5	The Gas Filter Correlation (GFC) Model 48 condition	47
	for measurement carbon monoxide in ambient air	
6	The average of carbon monoxide concentration were measured at the 5	68
	sites	
7	Body weight of the rats after exposed to carbon monoxide gas	71
8	The internal organs weight of the male rats after exposed to	72
	carbon monoxide gas	
9	The internal organs weight of the female rats after exposed to	73
	carbon monoxide gas	
10	Hematology of the male rats after exposed to carbon monoxide gas	74
	for 3 months	
11	Hematology of the female rats after exposed to carbon monoxide gas	75
	for 3 months	
12	Blood chemistry of the male rats after exposed to carbon monoxide gas	977
	for 3 months	
13	Blood chemistry of the female rats after exposed to carbon monoxide gas	n 78/ersit
	for 3 months	
14	Mean \pm standard deviation of carboxyhemoglobin levels in male and	80
	female rats after exposure to low concentration of carbon monoxide	
	gas for 3 months	

TAB	BLE	PAGE
15	Mean ± standard deviation of glutathione levels in male and	82
	female rats after exposure to low concentration of carbon monoxide	
	gas for 3 months	
16	Mean \pm standard deviation of glutathione levels in male and	84
	female rats after exposure to low concentration of carbon monoxide	
	gas for 3 months	
17	Mean \pm standard deviation of cytochrome c levels in male and	86
	female rats after exposure to low concentration of carbon monoxide	
	gas for 3 months	
18	Carbon monoxide concentration measured at the Rin Kham intersection	100
	for 7 days	
19	Carbon monoxide concentration measured at the Khung Sing intersection	102
	for 7 days	
20	Carbon monoxide concentration measured at the Juvenile Court intersection	n 104
	for 7 days	
21	Carbon monoxide concentration measured at the Nawarat bridge	106
	for 7 days	
22	Carbon monoxide concentration measured at the Warorod market	108
	for 7 days	
23	Body weights of the male rats in the first month of carbon monoxide	110
	exposure	
24	Body weights of the male rats in the first month of carbon monoxide	112
	exposure the Chiang Mai II	
25	Body weights of the male rats in the first month of carbon monoxide	114
	Exposure I I B II S II E S E	
26	Body weights of the female rats in the first month of carbon monoxide	116
	Exposure	

TABL	Æ	PAGE
27	Body weights of the <u>female</u> rats in the first month of carbon monoxide	118
	exposure	
28	Body weights of the female rats in the first month of carbon monoxide	120
	exposure	

LIST OF ILLUSTRATIONS

FIG	URES	PAGE
1	Transport, distribution and metabolism of carbon monoxide	4
	in body compartments	
2	The pathogenesis of carbon monoxide poisoning	5
3	Carbon monoxide's damaging actions: effects on body organs	7
4	Block Diagram of a Gas Filter Correlation Spectrometer	10
5	Flow schematic of GFC Model 48	11
6	Schematic of calibration system	12
7	Mechanism of action of carbon monoxide resulting from	15
	ambient exposure sources can interfere with cellular respiration	
	and cause tissue hypoxia	
8	Effects of carbon monoxide on mitochondrial respiratory chain	16
9	Coulter method of counting and sizing	18
10	Proposed mechanism for formation of lipid peroxidation from	30
	arachidonic acid	
11	glutathione (GSH), (L-γ-glutamyl-L-cyeteinyl-glycine)	33
12	Glutathione detoxifies the free radical (ROOH) and hydrogen	37
	peroxide (H ₂ O ₂) and recycle glutathione by glutathione reductase	
	and NADPH or FADH ₂	
13	Scheme of free radical-induced lipid peroxidation tissue	39
	damage and antioxidants defense	
14	Rin Kham intersection was the first sampling area for	48
	measurement of carbon monoxide concentration	
15	Khuang Sing intersection was the second sampling area for	49
	measurement of carbon monoxide concentration	

FIGURES		PAGE	
16	Juvenile Court intersection was the third sampling area for	50	
	measurement of carbon monoxide concentration		
17	East of Nawarat bridge was the fourth sampling area for	51	
	measurement of carbon monoxide concentration		
18	Warorod market was the fifth sampling area for	52	
	measurement of carbon monoxide concentration		
19	Gas Filter Correlation (GFC) Model 48 was used	53	
	for measurement of carbon monoxide concentration		
	in ambient air and exposure chamber		
20	The carbon monoxide exposure chamber used in this study	56	
21	The control rats were placed into the exposure chamber and	57	
	exposed to only air in the animal room at 25 °C, 12 hr light-dark		
	cycle per day		
22	The experimental rats exposed to carbon monoxide in the exposure	58	
	chamber		
23	Calibration curve of standard carboxyhemoglobin	79	
24	Calibration curve of standard glutathione	81	
25	Calibration curve of standard malondialdehyde	83	
26	The carbon monoxide generating system was used to	95	
	produce carbon monoxide gas		
27	The Spraque- Dawley rats were used in this experiment	96	
28	The rat was anaesthetized and fixed on the plate	96	
29	Neck skin was cut to preparing for collecting blood	Jn ⁹⁷ versity	
30	The blood sample was collected from the carotid artery	97	
31	The internal organ of the rat were flushed with 0.9% NSS	98	
	to prepare for the internal organs collection		

FIGU	JRES	PAGE
32	Carbon monoxide concentration at the Rin Kham intersection	101
	measured from 6 a.m. to 6 p.m. in 7 days, Monday through Sunday	
33	Carbon monoxide concentration at the Khung Sing intersection	103
	measured from 6 a.m. to 6 p.m. in 7 days, Monday through Sunday	
34	Carbon monoxide concentration at the Juvenile Court intersection	105
	measured from 6 a.m. to 6 p.m. in 7 days, Monday through Sunday	31
35	Carbon monoxide concentration at the Nawarat bridge	107
	measured from 6 a.m. to 6 p.m. in 7 days, Monday through Sunday	
36	Carbon monoxide concentration at the Warorod market	109
	measured from 6 a.m. to 6 p.m. in 7 days, Monday through Sunday	
37	Graph of body weight of the male rats in the first month of	10.5
	carbon monoxide exposure	
38	Graph of body weight of the male rats in the first month of	113
	carbon monoxide exposure	
39	Graph of body weight of the male rats in the first month of	115
	carbon monoxide exposure	
40	Graph of body weight of the female rats in the first month of	117
	carbon monoxide exposure	
41	Graph of body weight of the female rats in the first month of	119
	carbon monoxide exposure	
42	Graph of body weight of the female rats in the first month of	121
	carbon monoxide exposure	
	opyright [©] by Chiang Mai U	Jniversity -

LIST OF ABBREVIATIONS AND SYMBOLS

A Absorbance

4-AAP 4-Amimoantipyrine

ADP Adenosine diphosphate

ALP Alkaline phosphatase

ALT Alanine aminotransferase

AMP 2-amino-2-methyl-1-propanol

AST Aspatate aminotransferase

ATP Adenosine triphosphate

BUN Blood urea nitrogen

CBC Completed blood cell count

CE Cholesterol esterase

Cl Chloride

cm Centimeter

CO Carbon monoxide

CO₂ Carbon dioxide

COHb Carboxyhemoglobin

DHBS 3,5-dichlo-2-hydroxybenzenesulfonic acid

DHLA Dihydrolipoic acid

DNA Deoxyribonucleic acid

DTNB 5,5'-dithiobis- (2-nitrobenzoic acid)

e Electron

EDTA Ethylenediaminetatraacetic acid

g Gram

g/dl Gram/Deciliter

G.I. Gastrointestinal

GFC Gas Filter Correlation

G6PDPH Glucose-6-phosphate dehydrogenase

GLDH Glutamate dehydrogenase

xvii

GK Glycerol kinase

GPO Glycerophosphate oxidase

GPX Glutathione peroxidase

GSH Glutathione

Hb Hemoglobin

HCl Hydrochloric acid

Hct Hematocrit

HK Hexokinase

H₂O₂ Hydrogen hydroxide

HPO Horseredish peroxidase

IR Infrared

K Potassium

KCI Potassium chloride

LDH Lactate dehydrogenase

m³ Cubic meter

MCV Mean corpuscular volume

MCH Mean corpuscular hemoglobin

MCHC Mean corpuscular hemoglobin concentration

MDA Malondialdehyde

MDH Malate dehydrogenase

Millimolar

mg Miligram

ml Milliliter

mM

MW Molecular Weight

N₂ Nitrogen

Na Sodium

NAD β-nicotinamide adenine dinucleotide

NADH Reduced β-nicotinamide adenine dinucleotide

NAL N-acystenyl

NDIR Non-dispersive infrared technique

nm Nanometer

xviii

NSS 0.9% Normal Saline Solution

PLT Platelet

ppm Parts per million by volume

ppmm Parts per million by mass

PUFAs Polyunsaturated fatty acids

RBC Red blood cell

ROS Reactive oxygen species

SOD Superoxide dismutase

TBA Thiobarbituric acid

TMP Tetramethoxypropane

WBC White blood cell

μl Microliter

μM Micromolar

€ Extinction coefficient

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved