TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	viii
LIST OF TABLES	x
LIST OF ILLUSTRATIONS	xi
ABBREVIATIONS AND SYMBOLS	xiv
CHAPTER I: INTRODUCTION	
Water pollution	P
Cyanobacteria	1
Microcystis aeruginosa Kütz.	2
Factors affecting cyanobacterial blooms	2
Microcystis aeruginosa Kütz. Blooms	3
Microcystins	5
Toxicity of microcystins	7
Cytotoxicity of microcystins	8 8 0 K1
Carcinogenicity of microcystins	9
Guideline values for microcystin-LR in drinking	University
and recreational water	10
Extraction of microcystins	11
Analysis of microcystins	12
High performance liquid chromatography (HPLC)	13

Mass spectrometry (MS)	14
Objectives of the study	15
CHAPTER II: MATERIALS AND METHODS	
Apparatus	17
Chemicals	18
Surface cyanobacterial bloom sampling	18
Identification and isolation of M. aeruginosa Kütz.	18
Cultivation of M. aeruginosa Kütz.	20
Extraction of microcystins	20
Analysis of microcystins	20
Identification of microcystin-LR by using LC-MS-MS	21
Cytotoxicity test	22
Data analysis	24
CHAPTER III: RESULTS	
Identification of cyanobacteria samples	25
Separation of microcystins in cyanobacterial extract	25
Microcystin-LR concentrations in the algae cells and the	
culture media	33
LC-MS-MS Identification of microcystin-LR	40
Cytotoxicity of microcystin-LR on primary cultured	
rat hepatocytes	40
CHAPTER IV: DISCUSSION AND CONCLUSION	46
REFERENCES	Un ₅₃ versity
APPENDICES	
Appendix A	e ₆₇ V e o
Appendix B	69
CURRICULUM VITAE	71
	/ 1

LIST OF TABLES

Ta	ble	Page
1	Linear gradient condition at 1 mL.min used in the HPLC of	
	microcystins analysis	21
2	The concentrations of microcystin-LR in the algae cells and culture media	
	obtained from laboratory M. aeruginosa cultures	37
	ALIMITERS	
	UNIV	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

F	ligure	Page	
1	Structure of microcystin-LR	6	
2	Cyanobacterial bloom sampling by using a plankton net mesh size 10 µm	18	
3	Huay Yuak reservoir, Chiang Mai province, Thailand	30%	19
4	The surface cyanobacterial blooms in Huay Yuak reservoir, Chiang Mai province	19	
5	The reaction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium	19	
	bromide (MTT) in the mitochondria	23	
6	M. aeruginosa cells collected from Huay Yuak reservoir, Chiang Mai in		
	April 2003 (A) a lobated colony covered with a gelatinous sheath (400X)		
	(B) cells contained many gas vacuoles (1,000X)	26	
7	A typical HPLC-UV chromatogram of microcystin-LR standard,		
	determined at 238 nm using a Mightysil RP-18GP column and linear		
	gradient elution of aqueous acetonitrile (0.05% TFA)		
	The retention time of the microcystin-LR standard was at 11.8 min	27	
3	The calibration curve of microcystin-LR standard, plotted with concentrations	JUL	
	that ranged between 0.1-10 μ g.mL ⁻¹ and the peak area (r = 0.9837)	28	
U	A typical HPLC-UV chromatogram of the standard		
	microcystin mixture The retention time of standard microcystin-RR		
	(A), -YR (B) and -LR (C) was at 4.9, 9.7 and 11.8 min, respectively	29	

Fig	Figure	
	กมยนด์	
10	A typical HPLC chromatogram of cyanobacterial extract from a	
	surface bloom extract. The retention time of microcystin-RR and	
	-LR was at 4.9 and 11.8 min, respectively	30
11	HPLC separation profiles of microcystin-LR: (1) standard microystin-LR	
	(2) the surface bloom sample; (3) the spiked sample	31
12	HPLC chromatogram of purified microcystin-LR isolated from	
	surface cyanobacterial blooms extract.	
	The retention time of purified microcystin-LR was at 11.8 min.	32
13	The growth curve of M. aeruginosa grown in the 10 L batch-culture	
	MA medium vessel showing the logarithmic and stationary growth	
	phase during 1 month of harvested M. aeruginosa cultures	34
14	Typical HPLC chromatograms of extracted algae cells (1) comparison	
	to the chromatogram detected culture media extracted from	
	M. aeruginosa cultures (2)	35
15	The absorption spectra of microcystin-LR scanning with an	
	HPLC-Diode Array detector	36
16	Relationship of microcystin-LR concentrations between in the algae cells (A)	
	and culture media (B) from laboratory M. aeruginosa cultures	38
17	Relationship between the M. aeruginosa cell numbers and microcystin-LR	
	concentrations in the algae cells from laboratory M. aeruginosa cultures	39
18	Mass spectrum of the purified microcystin-LR isolated from Huay Yuak	
	M. aeruginosa cell extract identified by LC-MS-MS	41/
19	Mass spectrum of the standard microcystin-LR identified by LC-MS-MS	
	showing the molecular ion at m/z 995.8	42

Fig	gure	Page
	างมยนด	
20	Mass spectrum obtained from the fragmentation of microcystin-LR	
	showing the molecular ion at m/z 135 and 163	43
21	Survival curve of primary cultured rat hepatocytes incubated with different	
	concentrations of purified microcystin-LR (0-125 ng.mL ⁻¹) for 24 h.	
	Values are in triplicate measurements.	44
22	Survival curve of primary cultured rat hepatocytes incubated with different	
	concentrations of purified microcystin-LR (0-125 ng.mL ⁻¹) for 24 h.	
	Values are the mean of triplicate measurements.	45

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

AU absorbance unit

C₁₈ octadecyl silanised

°C degree celsius

cells.mL⁻¹ cells per millilitre

cps count per second

e.g. for example

ELISA enzyme linked immunosorbent

assay

Fig. figure

g gram

HPLC high performance liquid chromatography

h hour

i.p. intraperitoneal

IC50 the median inhibition concentration

L litre

LD50 the median lethal dose

LCT50 the median lethal concentration time

LC-MS-MS liquid chromatography-tandem mass

spectrometry-mass spectrometry

MS mass spectrometry

min minute

mg milligram

mm millimeter

mM millimolar m/z mass to charge ratio $\mu g.mL^{-1}$ microgram per millilitre $\mu g.L^{-1}$ microgram per litre μg.kg⁻¹ microgram per kilogram μm micrometer MTT 3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide ng.mL⁻¹ nanogram per millilitre $ng.L^{-1}$ nanogram per litre nm nanometer nM nanomolar pg.cell⁻¹ picogram per cell rpm revolution per minute Tr retention time **TFA** trifluoroacetic acid UV ultraviolet WHO world health organization % percentage

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved