CHAPTER 3
MAIN RESULTS

In this chapter we introduce a simple, smooth and adaptive controller for
resolving the control and synchronization problems of the perturbed Chua’s circuit

system.

3.1 Chua’s Circuit System

In this section, We will study the stability of the equilibrium points of

Chua’s circuit system described by the following dynamics system :

T = p(y—%(?x?’—x))
Uy = cz—y+z (3.1)

= —qy

where x, y and z are the state variables, p and ¢ are positive real parameters.

The system (3.1) has three equilibrium points
E, =(+0.5,0,—v0.5), Eb::(O,OAD7_E_::(_4/05’Qw/05)

. . . . 5 10p? 5
Theorem 3.1.1 If p and q are satisfies either inequality ¢ < <% or q < =5~ + 7,

then the three equilibrium points E, Ey,and E_ of the system (3.1) are unstable.

Proof. The Jacobian matrix of the system (3.1) about the equilibrium point
E = (2,3,7) is

— 612

Jo = 1 -1 1
0 —q 0

The characteristic equation of Jj is

5 p(6T2 — 1)\ 67> — 8 pq(6T* —1)
A+<1+f>A +<q—|—p( - ))A+—7 = 0.
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Let

p(67° — 1)
7

(672 — 8)

pq(6z* — 1)
- .

) and @3 = -

pr=1+ ; 902=q+p(

Firstly, if T = 0, then ¢3 < 0. According to Routh-Hurwitz criteria the
equilibrium point (0,0,0) is unstable.
Secondly, if T = £4/0.5, we have

2p op 2pq
©1 =} = Y2 = 4q - and @3 -

We can see that if ¢ < 5—7” then vy < 0 and if ¢ < % + 5—7” then p1ps < 3.
According to Routh-Hurwitz criteria the equilibrium point £, = (1/0.5,0, —v/0.5)
and E_ = (—0.5,0,/0.5) are unstable. O

3.1.1 Numerical Simulations

We give numerical experiments to demonstrate the effectiveness of the
proposed control scheme. Fourth-order Runge-Kutta method is used to solve the

differential equations with time step 0.01. The parameters p and ¢ are chosen as

p =10 and ¢ = @. The initial states are taken as z = 0.65, y = 0 and z = 0.
Fig. 3.1 shows the chaotic behavior of the states x, y and z of the system (3.1)
with time in zy-plane. Fig. 3.2 shows the chaotic behavior of the states x, y and
z of the system (3.1) with time in zz-plane. Fig. 3.3 shows the chaotic behavior

of the states z, y and z of the system (3.1) with time in yz-plane.



14

0.3

02r-

01r

-0.4

Figure 3.3: The chaotic attractor of Chua’s circuit system (3.1) in the yz-plane.
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3.2 The Perturbed Chua’s Circuit System

We will study the perturbed Chua’s circuit system described by the follow-

ing dynamics system :

1

b= ply = =2 —x))
Uy = r—y+2 (3.2)
3= —qy+ra’

where x, y and z are the state variables, p, ¢ and r are positive real parameters.

The system (3.2) has three equilibrium points

Ey =(0,0,0), Ey = (a1,61,M), E2 = (a2, [2,72)

where
Tr + 1/49r? + 8¢2 ra?
Q= 4 b ﬂlz_a 71:61_&1
q q
Tr — /4912 + 8¢ ral
Qo = 4q ; 62:727 72252_042‘

Theorem 3.2.1 For p,q and r are positive real parameters, the equilibrium point

Ey =(0,0,0) s unstable.

Proof. The Jacobian matrix of the system (3.2) at the equilibrium point Fy =
(0,0,0) is given by

p 0

Jo -1 1

I
(e [ L

The characteristic equation of J, is
N+ a X+ a4 a3 =0

where

a=1-2
! 7
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8p

Ay =q — —
2 =4q 7
as = — 24
3 7

We see that a3 < 0 does not satisfy the Routh-Hurwitz criteria, and so the equi-

librium point Fy = (0,0, 0) is unstable. O

Theorem 3.2.2 For p =10 and ¢ = &70 the equilibrium point By = (aq, B1,71) 18
(i) asymptotically stable if r > ry;
(i) unstable if 0 < r <ry;

where ry is the unique positive root of equation (3.5), (ry ~ 4.51841).

Proof. The Jacobian matrix of the system (3.2) at the equilibrium point F; =

(041, ﬁl? 71) 18 given by
p(—6a2+1)

7 p 0
Jl = 1 —1 1
2raq —q 0

The characteristic equation of J; is

N+ a2+ a)+a; =0

where
2
-1
a; = 1+ p(6041 )
7
602 — 8
e Zﬁalf) (3.3)
2
-1
as pq(6a71 ) + 2prag

Substituting «; in (3.3), we get the equation

588r2 108
a = 1+2] q; + g VA9 8¢ + 2]

7 162
58812 108
ay = q+2[—r+ r\/49r2+8q2—5] (3.4)
7L ¢? 1642
5882 108
as = ZE[ 2r +16 Z\/49r2—|—8q2+2]
q q

7
+2 |7+ /197 1 8¢7).

2q
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100

= in (3.4), we obtain a; > 0, as > 0 and a3 > 0 for

Substituting p = 10 and ¢ =
all » > 0. Let

58872 108
filr) =a1as —az = q+ g[ q; + 16q§\/497“2 + 8¢ — 5}
36p?
31316) ’ [19208r4 + 1372r%\/49r2 + 8¢2 + 3136¢°r?
q

54p?
122407 /4912 +8q2} —5 32 ! [98r2 4+ 8¢ (3.5)
q

8 2
147 /4972 + 8q2] > SN p_; [77“ /4972 + 8q2]

49 2

+

For p = 10 and ¢ = 2, we have f1(0) < 0 and fi(co0) > 0, so that f(r) has at
least one positive root. Since f{(r) > 0 for all » >0, fi(r) has only one positive
root. Let r; be the positive root of (3.5), for 0 < r < r; we have fi(r) < 0 and for
r > ry; we have fi(r) > 0.

When r > 7y, fi(r) > 0 satisfies the Routh-Hurwitz criteria. Thus, the
equilibrium point Ey = (aq, £1,71) is asymptotically stable if r > .

However, when 0 < r < rqy, we have that f;(r) < 0 which does not satisfy
the Routh-Hurwitz criteria therefore the equilibrium point Fy = (a1, 1,71) is
unstable. H

Theorem 3.2.3 Forp =10 and q = @ the equilibrium point Ey = (ag, P, 72) 18
(i) asymptotically stable if r > ry.
(7i) unstable if 0 < r < 15.

where 1o 1s the unique positive root of equation (3.8), (rs ~ 0.73672).

Proof. The Jacobian matrix of the system (3.2) at the equilibrium point Ey =

(a2, 32, 72) is given by
p(—6a3+1)

7 p 0
J2 - 1 -1 1
2rae —q 0

The characteristic equation of J; is

N4+ a N+ a)+as3=0
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where

a; = 1 +
a, = q+ (3.6)
a3 = —————= 4 2pras.

Substituting s in (3.6), we get the equation

20
a = 1+Z—7’[588T = 08rx/49r2+8q2+2}

¢ 1602

5882 108
@ = g+ g [—T —r V97 8¢7 — 5] (3.7)

e 1642
58812 108
4 = %[ " 2 T\/497*2—|—8q2—|—2}

q 164>

+]29—T [77" + /4972 + 8q2} :
q

Substituting p = 10 and ¢ = @ in (3.7), we obtain a; > 0, a; > 0 and ag > 0 for

all » > 0. Let

588r2 108
fQ(T’) = a1ag —asz = g |: { /r\/ 497“2 + 8(]2 - 5i|

162

36"
31367 [19208 4 1372r3\/49r2 + 8¢% + 3136¢°r
22402 \/4972 +8q2} 3136 :
8 2
~14r /207 8| + -5 - |7r - /197 + 507,

49  2q

[987“ + 8¢ (3.8)

For p = 10 and ¢ = +2, we have f3(0) < 0 and fy(o0) > 0, so that fy(r) has
at least one the positive root. Since fi(r) > 0 for all » > 0, fo(r) has exactly
one positive root. Let ry be the positive root of (3.8). For 0 < r < ry we have
fa(r) < 0 and when 7 > 75 we have fo(r) > 0.
When r > ry, satisfies the Routh-Hurwitz criteria when r > ry. Thus, the
equilibrium point Fy = (ag, fa,72) is asymptotically stable when r > .
However, when 0 < r < 79, fo(r) < 0 which does not satisfy the Routh-

Hurwitz criteria therefore the equilibrium point Es = (awg, (2, 72) is unstable. [
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3.2.1 Numerical Simulations

We give numerical experiments to demonstrate the effectiveness of the
proposed control scheme. Fourth-order Runge-Kutta method is used to solve the
differential equations with time step 0.01. The parameters p, ¢ and r are chosen as
p=10,qg= 1070, and r = 0.07. The initial states are taken as x = 0.65, y = 0 and
z = 0. Fig. 3.4 shows the chaotic behavior of the states z, y and z of the system
(3.2) with time in xy-plane. Fig.3.5 shows chaotic the behavior of the states x,
y and z of the system (3.2) with time in zz-plane. Fig. 3.6 shows the chaotic

behavior of the states z, y and z of the system (3.2) with time in yz-plane.

0.3

021

Figure 3.4: The chaotic attractor of the perturbed Chua’s circuit system (3.2) in
the xy-plane.
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Figure 3.5: The chaotic

the xz-plane.

attractor of the perturbed Chua’s circuit system (3.2) in

15F

b

-1.5F

Figure 3.6: The chaotic

the yz-plane.

attractor of the perturbed Chua’s circuit system (3.2) in
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3.3 Controlling Chaos of the Perturbed Chua’s Circuit
System

In this section, the chaos of system (3.2) is controlled to one of the three
equilibrium points of the system. Feedback control and adaptive control are ap-

plied to achieve this goal.

3.3.1 Feedback Control Method

Let us consider the controlled system of the system (3.2) which has the

form

i = ply— 1(21’3 — 7))+

2
g = x—y+z+us (3.9)
i = —qu+ra’+us

where uy, us and uz are external control inputs which will drag the chaotic trajec-
tory (x,y, z) of the perturbed Chua’s circuit system to E = (7,7, Z) which is one
of the three steady states Ey, E; and Fs. Let the control laws take the following
form

U1 = —k?l(l’ —f),UQ = —l{ig(y —@),u?, = —kig(Z —2)

where ki, ko and k3 are a positive feedback gain.

Stabilizing the equilibrium point £ = (7,7, Z)

In order to suppress chaos to E = (7,7,%Z), we introduce the external
control laws uy; = —k1(x — T),us = —ko(y —¥),us = —ks(z — Z) with z,y and 2
as the feedback variables into system (3.9). Hence the controlled system (3.9) has

the following form:

T = p(y—%(2x3—x))—k1(x—f)

y = v—y+z—hk(y—7) (3.10)

i o= —qytra® —ks(z—32).
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The controlled system (3.10) has the equilibrium point F = (7,7,%). The
system (3.10) can be stabilized to the steady state £ = (7,7,%) if k; > kf, i =
1,2, 3 is satisfied and the system parameters are constant and known.

Let usconsider & =2 —7, &=y -4, & =2—Z, « :p<%(—6f2+ 1)),
and § = 2r7x.

Theorem 3.3.1 The equilibrium point E = (T,7,Z) of the system (3.10) is asymp-
totically stable provided that ky > ki = a+p+ %p s ko > k3 =0 and ks > ki = %

Proof. The Jacobian matrix of the system (3.10) about the equilibrium point

E = (Ea Y, z) is
p(—6§2+1) “ky P 0
J = 1 ~1-k 1 |- (3.11)
2rx —q —ks

The linearized system of (3.11) is given by
& = (a—=hk)&+pt
& = G- (1+k)o+& (3.12)
&= P — qb — ks,

We study the stability of the equilibrium point (0, 0,0) of the system (3.12)
Consider the Lyapunov function V (£, &2, &3) in the form

1
V(&1,8&,8) = 5 [gfi + 48 + & (3.13)

The time derivative of V' in the neighbourhood of (0,0,0) is

Vo= §£1£1+q52£2+5353
= Z%&[(a—m&w@}+q52[51—(1+k2>52+53]
65 (€L — g2 — kst
= o R)E g + 066 — 08 + a6l — gkt

+8&1&5 — q&ols — ks&3
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- %(a — k)€ — €2 — 26165 + €2) + 2 — qhnt

1 52 53 2

5(53 — 2666 + B7E]) + 51 — ks&3

q Fp

= ];(kl —a—p— —)51 —q(& — 52)2—%25%
1
5(53 3 551) (ks = 5)53-
Itisclearthaﬂ'/<01fk1>k;:a+p+ , ky > ki = 0 and

ks > ki = % According to Lyapunov stability theory the equilibrium point
(0,0,0) is asymptotically stable. O

Numerical Simulations

We give numerical experiments to demonstrate the effectiveness of the
proposed control scheme. Fourth-order Runge-Kutta method is used to solve
the differential equations with time step 0.01. The parameters p, ¢ and r are
chosen as p = 10, ¢ = 1—20, and r = 0.07 to ensure the existence of chaos in
the absence of control. The initial states are taken as z = 0.65, y = 0 and
z = 0. The equilibrium point Ey = (0,0,0) of the system (3.2) is stabilized for
ki =11.4, ks = 0.1 and ks = 0.55. Fig. 3.7 shows the chaos is suppressed to the
equilibrium point Ey with time. The control is active at ¢ = 10. The equilibrium
point E; = (0.71573,0.00251, —0.71322) of the system (3.2) is stabilized for ky =
8.75, ko = 0.1 and k3 = 0.55. Fig. 3.8 shows the chaotic trajectory can be
stabilized to the equilibrium point F; with time. The control is active at ¢ = 10.
The equilibrium point Ey = (—0.69858, 0.00239, 0.70098) of the system (3.2) is
stabilized for ky = 8.75, ko = 0.1 and k3 = 0.55. Fig. 3.9 shows the chaotic
trajectory can be stabilized to the equilibrium point Fy with time. The control is

active at t = 10.
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Figure 3.7: The stabilization of the equilibrium point Ej of the system (3.2). The

control law vy = —11.4x,us = —0.1y, uz3 = —0.55z2 is activated at ¢ = 10.

0.5

|
LS

Figure 3.8: The stabilization of the equilibrium point E; of the system (3.2). The
control law u; = —8.75(x — 0.71573),uy = —0.1(y — 0.00251),u3 = —0.55(z +
0.71322) is activated at ¢t = 10.
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Figure 3.9: The stabilization of the equilibrium point Fy of the system (3.2). The
control law u; = —8.75(x + 0.69858),us = —0.1(y — 0.00239),u3 = —0.55(z +
0.70098) is activated at t = 10.

3.3.2 Adaptive Control with two Controllers

In this case the control law is
up=—g(x =T),us = 0,u3 = —(k(z —2) + r(z — ) + 2rT(z — 7).  (3.14)
where g and k are updated according to the following adaptive algorithm :

g = ple—7)?
k= plz—%)? (3.15)

where p, p are adaption gains. Then the controlled system (3.9) has the following

form:

i & plye ) - gz - T)

7
Yy = z—y+=z
i= —qytra®— (k(z—2)+r(z=72)° + 2rz(z — 7)) (3.16)
g = wz-1)?

E = plz—2)%

Let us consider a = p(%( — 672 + 1))
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Theorem 3.3.2 Assume that g* and k* are real satisfy the inequality g* > p + «
and k* > 0. The equilibrium point E = (Z,7,Z) of the system (3.16) is asymptot-
ically stable.

Proof. Let us consider the Lyapunov function

| U A CEE LE A R
1 *\ 2
+E(k_k ) ] (3.17)

The time derivative of V in the neighbourhood of the equilibrium point £ =
(%, %, z) of the system (3.16) is

: q — - — - — - q .
V= “(@e-2)2+qy—9)y+(z-2)i+—@g—9g"
pEmDEF A=)+ (= —2)2+ (g —9)9
1
+= (k= K"k (3.18)
p
Substituting (3.16) in (3.18), we obtain

(=3 [ply — 25" — ) (e = )] +aly ~x —y+ 2

+(z—2)—qu+rz* —k(z—2) —r(z = T)* — 2rT(z — T)]

(9—9 )@ —7)" + (k= k") (z—2)"

V:

Let =2 —-7,n, =y — 7y and n3 = 2z — zZ. We have

: _ 1 _ _ q9 _ _
Vo= qm[n2+y——(2(771+x)3—m—x)}—?n?ﬂtqnz[nﬁx—m—y

\]

+n3 + 2 4+ n3[—q(ne + 7) + r(m +T)* = rii — 2rTm — ki)
q \
+p(g g + (k= k)3

1 _ L, 1 a9
= qm [nz +7 — ;(2(77? + 3KT + 3T +T°) — 1y — x)} — ;77? + gmng

+qTN2 = qNs — qYNa + M3 + GZN2 — qamz — qUNs + TN + 2rTns

+rT2ns — rnins — 2remns — kn; + (g gIn; + (k —k*)n3

1 1, - _ 1 B
= 4 [772 = = (20 —m) = =(6T°m + 6xn1)} +am (7 - =(22" = 7))
99 L qg
- 771 + (T =Y+ 2) + gmnz — i + n3(—qy + rT) — knj + _nf

*

qg

nt + kns — k*n;.
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Since (Z,7, %) is an equilibrium point of the uncontrolled system (3.2), V becomes

Vo= qmmp = a2l — SaE0) — Sq@ + g — an; , n — k3
2 6., 1 g¢g* 6 _ .
= 2qmnn — ;qnil - qnf<§:r2 -+ §> = ;mﬁ’ —qn; — k*nj
g (672 —1)\ 2 6 .
— —qn§ + 2qmmne — qnf<? + 7) — ?qnf — ?qxnf —k 77§

gt (672 1)\ 2 6 _ .
= —q(n5 — 2qmms +n7) + ani — ani (5 + %) — ;qni‘ — ;q:mﬁ’ — k*n3
gt (622 -1)\ 2 6 _ .
= —qlp=m)* —a( =1+ ST T) = Zq — ZqT — ks
g —67° + 1 2 6 _ )
= —q(n— 771)2 > QU%(— - (1 + g)) N —qnil — —qa:nf —k ng

p 7 7 7
q p L 2 6 _ .
= —q(n2—m)* — - (g —p—p(5(—62* + 1))) — Zqnt — —q@n? — k*n2
p 7 7 7
q, 2 6 _ .
= —q(nz —m)* - v Qi — Zani — qw; — k.

It is clear that for positive parameters p, q,r, u and p, if we choose g* > p + «,
k* >0 and || is sufficiently small then V' is negative semidefinite and Lyapunov
function V' in (3.17) is positive definite implies that the equilibrium points of the
system (3.16) are stable, i.e. 71,72,73 € Loo. We integrate both side of V with

respect to time which yields

/OOO %Y)Ch ~ _/oooq(m(ﬂ _m(T))QdT_/OOO%(g* —p—a)ni(r)dr

[ Zanioyir = [ Samioyir— [ egar
V(0) - V(o) = Oooq<n2<r>—m<f>) dr i / T p— ay(r)dr
6
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Since V is negative or zero, V' is either decreasing or constant which gives V(0) >
V(o0) > 0. Then we obtain

o0

| alnr) =i+ [ L p= i+ [ Zairiar
+ /Ooo gqfn?(f)df + /OOO k*n3(t)dr < V(0) < oo.

It follows that

\//Oooq(ng(T) = 771<T))2d7' < 00,
\/ | 4 p - pr)dr < o

\// k*n3(T)dr < oo
0

which indicates, according to Definition 2.1.1, that 1y, 72,173 € Lo. We can use

(3.16) to show that 7j, 72, 75 € Loo. By Proposition 2.1.2 we obtain 7y, 19,73 — 0

ast — o0, ie. x — T,y — Y, 2 — Z. |

Numerical Simulations

Numerical experiments are carried out to investigate controlled systems
by using fourth-order Runge-Kutta method with time step 0.01. The parameters
p, q, r, it and p are chosen as p = 10, g = @, r=0.07, p =1 and p = 1 to ensure
the existence of chaos in the absence of control. The initial states are taken as
x = 0.65, y = 0 and 2z = 0. The initial value of parameters g and k are set to
be 0 in this simulation. Fig. 3.10-3.12 show time response for the states x, y and
z of the controlled system (3.9) after applying adaptive control. The changing
parameters g and k are depicted in Fig. 3.13-3.14.
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Figure 3.10: The time response of the states x,y and z of the controlled system

(3.16), where T = 0,7 =0 and zZ = 0.

I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 3.11: The time response of the states x,y and z of the controlled system

(3.16), where T = 0.71573,7 = 0.00251 and z = —0.71322.
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Figure 3.12: The time response of the states x,y and z of the controlled system

(3.16), where T = —0.69858, 7 = 0.00239 and Z = 0.70098.
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Figure 3.13: Changing of parameter g of the adaptive control.
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Figure 3.14: Changing of parameter k of the adaptive control.
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3.4 Synchronization of the Perturbed Chua’s Circuit
System

To begin with, the definition of chaos synchronization used in this thesis
is given below.

For two nonlinear chaotic systems:

i = f(tz) (3.19)

y = g<tay)+u(tvx7y) (320)

where z,y € R, f,g € C"[RT x R", R"], u € C"[R" x R" x R" R"], r > 1, R" is
the set of non-negative real numbers. Assume that (3.19) is the drive system, and
(3.20) is the response system, u(t, x,y) is the control vector. Response system and

drive system are said to be synchronic if V(ty), y(ty) € R™,

lim || 2(t) ~ y(t) JI= 0.

t—o0

3.4.1 Synchronization of the Perturbed Chua’s Circuit System
Using Active Control

In this section, we assume that we have two perturbed Chua’s circuit system
and that the drive system (with the subscript 1) drives the response system (with
subscript 2). The systems are

. 1
71 = p(h— ;(%?1’ — 71))
i = T1—yit A (3.21)

o= —qui +ra}

and

1

Ty =
Yo =

29 =

p(y — ;(21’3 — 19)) + uy(t)

Ty — Yo + 29 + ua(t)

—qy2 + m"g + us(t).

(3.22)
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We have introduced three control functions uy(t), us(t), us(t) in (3.22). Our goal
is to determine the control functions u;(t), us(t) and us(t). In order to estimate
the control functions, we subtract (3.21) from (3.22). We define the error system
as the difference between system (3.21) and the controlled system (3.22). Let us
define the state errors between the response system (3.22) that is to be controlled

and the controlling system (3.21) as

€r — T2 — I
€y = Y2— W1 (3.23)
€, — Z9 — 2.

Subtracting (3.21) from (3.22) and using the notations in (3.23) yields

€, = p(ey — 1((2;1:3 —22%) — ex)> + uy (t)

7
€y = e;—ey+e,+ust) (3.24)
€. = —qey+re (a4 x1) + us(t).

We define active control functions wu;(t), us(t) and usz(t) as follows

u(t) = Va(t) + 2 <x§’ 2 xi’)

7
us(t) = Va(t) —er—e, (3.25)
us(t) = Vi(t) +qey — e, — reg(xy + x7).

Hence, the error system (3.24) becomes

€, = gex + pe, + Vi(t)
€, = —e,+ Vi) (3.26)
e, = —e,+ V5(t).

The error system (3.26) is a linear system with a control input Vi(t), V5(t) and
V5(t) as function of the error states e, e, and e,. There are many possible choices

for the controls Vi(t), Va(t) and V5(t). We choose
Vi(t)
Va(t) | =A | e
Va(t)

€y

€
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where A is a 3 x 3 constant matrix. Let the matrix A is chosen in the following

form
- -p 0
A= 0 -1 0
0 0 -1

With this particular choice of A, (3.26) has the eigenvalues —1, —2 and —2.
This choice will lead to the error states e, e, and e, converge to zero as time
t tends to infinity and this implies the synchronization of the Perturbed Chua’s
Circuit System. 0

Numerical Simulations

Fourth-order Runge-Kutta integration method is used to solve two system
of differential equations (3.21) and (3.22) with time step size 0.01. We select the
parameter of (3.21) as follow: p =10, ¢ = £ and r = 0.07 to ensure the chaotic
behavior of perturbed Chua’s circuit system. The initial values of the drive system
are £1(0) = 0.65, y1(0) = 0 and z1(0) = 0 and the initial values of the response
system are 25(0) = 0.2, y2(0) = 0.1 and 25(0) = 0.1. Then the initial values of the
error system are e,(0) = —0.45, e,(0) = 0.1 and e,(0) = 0.1.

The results of the simulation of the two identical perturbed Chua’s circuit
systems without active control are shown in Fig. 3.15 (displays x; and x3), Fig.
3.16 (displays y; and ys), Fig. 3.17 (displays z; and z3). Fig. 3.18-3.20 show the
synchronization is occurred after applying active control at ¢ = 10. Fig.3.21 shows

the state errors (e,, ey, e,) of perturbed Chua’s circuit system of equations with

the active control activated.
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x1,x2

Figure 3.15: The states x1, x5 of the coupled perturbed Chua’s circuit system of

equations with the active control deactivated.
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Figure 3.16: The states y1, yo of the coupled perturbed Chua’s circuit system of

equations with the active control deactivated.
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-15

Figure 3.17: The states 2, 2o of the coupled perturbed Chua’s circuit system of

equations with the active control deactivated.

x1,x2

Figure 3.18: The states x1, x5 of the coupled perturbed Chua’s circuit system of

equations with the active control activated.
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Figure 3.19: The states yi, y2 of the coupled perturbed Chua’s circuit system of

equations with the active control activated.
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Figure 3.20: The states z1, 2o of the coupled perturbed Chua’s circuit system of

equations with the active control activated.
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Figure 3.21: The states error (e, ey, e,) of perturbed Chua’s circuit system of

equations with the active control activated.

3.4.2 Adaptive Synchronization of the Perturbed Chua’s circuit
System

This section considers adaptive synchronization of perturbed Chua’s circuit
system. This approach can synchronize the chaotic systems when the parameters
of the drive system are fully unknown and different with those of the response
system. The synchronization problem of perturbed Chua’s circuit systems with
fully unknown parameters will be studied in which the adaptive controller will be
introduced.

We assume that we have two perturbed Chua’s circuit systems and that
the drive system (with the subscript 1) is to control the response (with subscript

2). The drive and response systems are defined as follows: The drive system is

1

£ = p(y— ;(255? — 1))
i = m1—yta (3.27)
i o= —qp +ra}

where the parameters p,q and r are unknown or uncertain, and the response
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system is

1
gy = pi(ye— =225 — 32)) —w

7
Yo = Ty — Yo+ 23— U
Zy = —quYs + 7175 — u3

(3.28)

where p1,q, and r; are parameters of the response system which need to be esti-

mated, and u = [ug, uz, us|” is the controller. We choose

2
uy = kie, — 7p<$§’ — ZB“I’)

Uo — k?g €y

ug = kge, + 7"(5153 - x%)

where e,, e, and e, are the error states which are defined as follows:

€y = T2 — X1
Cy = Y2—U
€ = k221

The parameters pi, q;, and ry satisfy the system

. 2 1
PLo= fo = —7(;:6361« = =2 — ym)
(jl = fq1 = 9y2€z

: 2
n = frl :_5I2€z

where ki, ko, k3 > 0 and v, 6,0 are positive real constants.

(3.29)

(3.30)

(3.31)

Theorem 3.4.1 If ky, ke and ks are chosen to satisfy the following matriz inequal-

1ty,

(3.32)
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or the inequalities,

() A = k1—§>0
1 2
(i) B = A(k2+1)—1(p+1> =0 (3.33)
1 2 k3 2
(t1) C = A(k2+1)k3—AZ<p+1) —Z<p+1) >0

then the two perturbed Chua’s circuit systems (3.27) and (3.28) can be synchro-
nized under the adaptive control of (3.29) and (3.31).

Proof. It is easy to see from (3.27) and (3.28) that the error system can be

obtained as follows:

€x = p1(312—1( x5 — @) —P(yl—l( Ty — 1)) —w

7 7
éy = T2 — Y3 + 29 — 11 + Yy — 21 — U9 (334)
€. = —qy2+71T5+ qyi — 1T — us.

Let e, = p1 —p,eq = ¢1 —q and e, = 1 — r. Choose the Lyapunov function as
follows:
Lo, o, o 1o 15 15,
V() = > (ew +e, te;+ aep + 76 + 5€r>- (3.35)
then the differentiation of V' along trajectories of (3.35) is

. ) . . r . 1 . .
V= g€ +eyey +e.€, + —epep + —€,64 + <€,6,
v

0 1)
1 3 1 3
= eupri (v — ;(2902 —25)) — p(y1 — ;(2961 — 1)) — ui]
—|—€y[$2 — Yotz — 21+ — 21— u] Fef—qy + T1$§

1 1 1
+qy — rzs — ug) + ;epfp M geqfq o gerfr

B 2p1rs  2pxt  2pxy  2pad
= ex[P1ye — PY1L + PY2 — PYa) em[ = STE 3
i T Xr X
e [p17 2 - ]% + Y% - ]%] +eyl(ze — 1) — (Y2 — 1) + (22 — 21)]

tel—qys + qun + qya — qya] + e[l — rat + ray — rad)

1 1 1
—e,pU] — EyUo — €Uz + —¢€ + —e + =e,fr
1 y U2 3 v pr 0 qfq 5 f
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Vo= elepyn +pey] —e 617)% + 7]9(373 - x?)} + ex [@ + ]%]

eyles — ey + e —exleqya + qey| + ez[erxg + 7z — xf)]

—€zU1L — EylU — €;U3 + ;6pfp + éeqfq + gerfr

2

2T5e,6, _2p T9€pCy n pe;

7 7 7 7
2 2 2 2
CrCy — €, T ey, —ypese. — qeye, + There, + (5 — Ti)e,

(a5 = 27)es +

= y2€pem + perey A |

2
—kpe2 + 7p(m§’ — e, — k’2€3 — kse2 —r(z3 — x})e,

1 1 1
"";epfp + aeqfq =+ Serfr

= —<k1 - %)ei — (ko +1)e; — kseZ + (p+ Desey + (1 — q)eye.

1 Toe, 2x3e,
+€p [;fp + Y2€y s, 2 R

7 7

(k= 2)e = (ha + 1)} —kae? £ (p + Dleacy| + (1= g)leyen

] + e, [%fq — ygez] +e, [%fr + a:%ez}

IN

= —¢''Pe

where e = [le.| |ey| |e.|]” , P is as in (3.32). Thus, the differentiation of V' (¢) is
negative semidefinite, which implies that the origin of error system (3.34) is stable,
i.e. ey(t),ey(t),e.(t) € Loo. By the same argument in the proof of Theorem 3.3.2,
we obtain the errors system (3.34) tend to zero as t tends to infinity. Therefore,
the response system (3.28) is synchronizing with the drive system (3.27) under the
controller (3.29) and a parameter estimation update law (3.31), provided that the
condition (3.33) are satisfied. O

Numerical Simulations

The numerical simulations are carried out using the fourth-order Runge-
Kutta method. The initial states are z1(0) = 0.65, y1(0) = 0 and 2,(0) = 0 for the
drive system and z5(0) = 0.2, y2(0) = 0.1 and 22(0) = 0.1 for the response system.
The parameters of the drive system are p = 10, ¢ = % and r = 0.07. The control

parameters are chosen as follows k; = 3, ky = 32, k3 = 13 which satisfy (3.33) and

v =60 =9 = 1. The initial values of the parameters p;, ¢; and r; are all chosen
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to be 0 the response system synchronizes with the drive system is shown in Fig.
(3.22). The changing parameters of py, ¢; and r; are shown in Fig. (3.23)-(3.25).

15

ex.ey.ez

0.5

-0.5

Figure 3.22: Synchronization error (e;,ey,€,) states for system (3.27) and (3.28)

with time ¢.

-0.35

Figure 3.23: Changing parameter p; of system (3.28) with time ¢.
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Figure 3.24: Changing parameter ¢; of system (3.28) with time ¢.
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Figure 3.25: Changing parameter r; of system (3.28) with time ¢.



