CHAPTER 1

INTRODUCTION

In [2], Agarwal and Grace studied the asymptotic stability of the equilibrium x = 0 of the neutral system

$$x'(t) + Cx'[t - \tau] = Ax(t) + Bx[t - \tau]$$
(*)

where $x(t) \in \Re^n$ is the state vector, τ is a positive constant time-delay, $A \in \Re^{n \times n}$, $B \in \Re^{n \times n}$ and $C \in \Re^{n \times n}$ are constant system matrices. They then have:

Theorem 1.0.1 [2] The equilibrium x = 0 of (*) is asymptotic stability if there exist a positive definite matrix P and a matrix $\Lambda = diag\{\lambda_1, \ldots, \lambda_n\}, \lambda_i > 0$, $i = 1, 2, \ldots, n$ such that for any positive constants α , β with $\alpha + \beta = 1$, the following matrix

$$F = A^T P + PA + \Lambda + \frac{1}{\alpha} K^T H^{-1} K + \frac{1}{\beta} M^T H^{-1} M$$

is negative definite, where $H = \Lambda - B^T P C - C^T P B$ is positive definite, $K = C^T P A$, and $M = B^T P$.

They also studied the asymptotic stability of the equilibrium x = 0 of the Hopfiled neural network

$$x'(t) + Cx'[t-\tau] = Ax(t) + BT(x[t-\tau])x[t-\tau]$$
(**)

where $x(t) \in \Re^n$ is the state vector, τ is a positive constant time-delay, $A = diag\{a_1, ..., a_n\}, a_i > 0, i = 1, 2, ..., n, B \in \Re^{n \times n}$ and $C \in \Re^{n \times n}$ are constant system matrices, $T(x) = diag\{\sigma_1(x_1), ..., \sigma_n(x_n)\}, \sigma_i(x_i) = \frac{s_i(x_i)}{x_i}$. They then have: **Theorem 1.0.2** [2] The equilibrium x = 0 of (**) is asymptotic stability if there exist a positive definite matrix P and a matrix $\Lambda = diag\{\lambda_1, ..., \lambda_n\}, \lambda_i > 0$, i = 1, 2, ..., n such that for any positive constants α , β with $\alpha + \beta = 1$, the following matrix

$$F_1 = A^T P + PA + \Lambda + \frac{1}{\alpha} K^T \Lambda^{-1} K + \frac{1}{\beta} W^T \Lambda^{-1} W$$

is negative definite, where $W = PBT(x[t - \sigma])$, and $K = C^T PA$.

In this paper, we study extend (*) to neutral system of the from

$$x'(t) + Cx'[t-\tau] = Ax(t) + Bx[t-\sigma] + f(t, x(t), x[t-\tau], x[t-\sigma])$$
(1.1)

where $x(t) \in \Re^n$ is the state vector, τ and σ are positive constant time-delays, $A \in \Re^{n \times n}$, $B \in \Re^{n \times n}$ and $C \in \Re^{n \times n}$ are constant system matrices and $f(t, x(t), x[t - \tau], x[t - \sigma])$ is a nonlinear perturbation.

We also study extend (**) to the Hopfiled neural network of the from

$$x'(t) + Cx'[t - \tau] = Ax(t) + BT(x[t - \sigma])x[t - \sigma] + f(t, x(t), x[t - \tau], x[t - \sigma])$$
(1.2)

where $x(t) \in \Re^n$ is the state vector, τ and σ are positive constant time-delays, $A = diag\{a_1, ..., a_n\}, a_i > 0, i = 1, 2, ..., n, B \in \Re^{n \times n}$ and $C \in \Re^{n \times n}$ are constant system matrices, $T(x) = diag\{\sigma_1(x_1), ..., \sigma_n(x_n)\}, \sigma_i(x_i) = \frac{s_i(x_i)}{x_i}$ and $f(t, x(t), x[t - \tau], x[t - \sigma])$ is a nonlinear perturbation, where s_i is monotonically increasing for i = 1, 2, ..., n.

Therefore, the purpose of this paper is to establish sufficient conditions for the asymptotic stability of the equilibrium x = 0 of (1.1) and (1.2).

Moreover, theorems which are obtained will be verified by numerical simulations.

âðânຣົ້ມหາວົກຍາລັຍເຮີຍວໃหມ່ Copyright © by Chiang Mai University All rights reserved