
CHAPTER 2

PRELIMINARIES

In this chapter, we give some notations and definitions that will be used

in the later chapters.

2.1 Stability

2.1.1 Definitions

Consider the system described by

ẋ = f(x, t) (2.1)

where x ∈ Rn, ẋ =

[
dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

]
and f is a vector having components

fi(x1, ..., xn, t), i = 1, 2, ..., n. We shall assume that the fi are continuous and sat-

isfy standard conditions, such as having continuous first partial derivatives so that

the solution of (2.1) exists and is unique for given initial conditions. If fi do not

depend explicitly on t, (2.1) is called autonomous. (otherwise, nonautonomous).

If f(c, t) = 0 for all t, where c is some constant vector, then it follow at once from

(2.1) that if x(t0) = c then x(t) = c, for all t ≥ t0. Thus solutions starting at

c remain there, and c is said to be an equilibrium or critical point. Clearly, by

introducing new variables x́i = xi− ci we can arrange for the equilibrium point to

be transferred to the origin; we shall assume that this has been done for any equi-

librium point under consideration (there may well be several for a given system

(2.1) ) so that we then have f(0, t) = 0, t ≥ t0.

An equilibrium state x = 0 is said to be

1. Stable if for any positive scalar ε there exists a positive scalar δ such

that ‖x(t0)‖e < δ implies ‖x(t)‖e < ε, t ≥ t0, where ‖.‖e is a standard Eucledian

norm.

2. Asymptotically stable if it is stable and if in addition x(t) → 0 as

t →∞.
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3. Unstable if it is not stable; that is, there exists an ε > 0 such that for

every δ > 0 there exist an x(t0) with ‖x(t0)‖e < δ so that ‖x(t1)‖e ≥ ε for some

t1 > t0. If this holds for every x(t0) in ‖x(t0)‖e < δ the equilibrium is completely

unstable.

2.1.2 Algebraic Criteria for Linear Systems

Before studying nonlinear systems we return to the general continuous

time linear system.

ẋ = Ax, (2.2)

where A is a constant n × n matrix, and (2.2) may represent the closed or open

loop system. Provided det A 6= 0, the only equilibrium point of (2.2) is the origin,

so it is meaningful to refer to the stability of the system (2.2). The two basic

results on which the development of linear system stability theory relies are now

given.

Theorem 2.1.1 The system (2.2) is asymptotically stable if and only if A is a

stability matrix, i.e. all the characteristic roots λk of A have negative real parts;

(2.2) is unstable if for some characteristic roots λk, <e(λk) > 0; and completely

unstable if for all characteristic roots λk, <e(λk) > 0.

See [3] for more details.

2.1.3 Lyapunov Theory

Consider autonomous system of nonlinear equations,

ẋ = f(x), f(0) = 0. (2.3)

We define a Lyapunov function V (x) as follows:

1. V (x) and all its partial derivatives
∂V

∂xi

are continuous.

2. V (x) is positive definite, i.e. V (0) = 0 and V (x) > 0 for x 6= 0 in some

neighbourhood ‖ x ‖≤ k of the origin.
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3. The derivative of V with respect to (2.3), namely

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 + ... +
∂V

∂xn

ẋn

=
∂V

∂x1

f1 +
∂V

∂x2

f2 + ... +
∂V

∂xn

fn (2.4)

is negative semidefinite i.e. V̇ (0) = 0, and for all x in ‖x‖ ≤ k, ˙V (x) ≤ 0.

Notice that in (2.4) the fi are the components of f in (2.3), so V̇ can be

determined directly from the system equations.

Theorem 2.1.2 The origin of (2.3) is stable if there exists a Lyapunov function

defined as above.

Theorem 2.1.3 The origin of (2.3) is asymptotically stable if there exists a Lya-

punov function whose derivative (2.4) is negative definite.

See [3] for more details.

2.1.4 Application of Lyapunov Theory to Linear Systems

The usefulness of linear theory can be extended by using the idea of lin-

earization. Suppose the components of f in (2.1) are such that we can apply

Taylor’s theorem to obtain

f(x) = Áx + g(x), (2.5)

using f(0) = 0. In (2.5) Á denotes the n × n constant matrix having elements

(∂fi/∂xj)x=0, g(0) = 0 and the components of g have power series expansions in

x1, x2, ..., xn beginning with terms of at least second degree. The system

ẋ = Áx (2.6)

is called the first approximation to (2.1). We then have:

Theorem 2.1.4 (Lyapunov’s linearization theorem) If (2.6) is asymptotically sta-

ble, or unstable, then the origin for ẋ = f(x), where f(x) is given by (2.5), has

the same stability property.

See [3] for more details.
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2.2 Routh-Hurwitz Theorem

Consider the characteristic equation of matrix A

det(λI − A) = λn + a1λ
n−1 + ... + an−1λ + an = 0 (2.7)

determining the n eigenvalues λ of a real n× n square matrix A,

where I is the identity matrix.

Theorem 2.2.1 The n× n Hurwitz matrix associated with a(λ) in (2.7) is

H =



a1 a3 a5 · · · a2n−1

1 a2 a4 · · · a2n−2

0 a1 a3 · · · a2n−3

0 1 a2 · · · a2n−4

· · · · · · ·

· · · · · · ·

0 0 0 · · · an


where ar = 0, r > n. Let Hi denote the i(th) leading principle minor of H. Then

all the roots of a(λ) have negative real parts (a(λ) is a Hurwitz polynomial) if

and only if Hi > 0, i = 1, 2, ..., n− 1.

If n = 3 then

|λI − A| = λ3 + a1λ
2 + a2λ + a3 = 0

In this case all of the eigenvalues λ have negative real parts if

H1 > 0, H2 > 0,

or

(1) a1 > 0,

and (2)

∣∣∣∣∣∣ a1 a3

1 a2

∣∣∣∣∣∣ > 0 or a1a2 − a3 > 0.

Since we have assumed that the ai are real it is easy to derive a simple

necessary condition for asymptotic stability:
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Theorem 2.2.2 If the ai in (2.7) are real and a(λ) corresponds to an asymptoti-

cally stable system, then

ai > 0, i = 1, 2, ..., n.

2.3 Fourth-Order Runge-Kutta Method

In order to solve an initial-value problem

dx

dt
= f(t, x), x(t0) = x0

where x = [x1, x2, . . . , xn]T and f = [f1, f2, . . . , fn]T .

The best known Runge-Kutta method of the first stage and fourth order

is given by

Xi+1 = Xi +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = hf(ti, Xi)

k2 = hf(ti +
h

2
, Xi +

k1

2
)

k3 = hf(ti +
h

2
, Xi +

k2

2
)

k4 = hf(ti + h,Xi + k3)

where Xi is an approximation of x(ti) when Xi = [Xi1, Xi2, . . . , Xin]T , ti = t0 + ih,

h is step size and ki = [ki1, ki2, . . . , kin]T ,∀i = 1, . . . , 4.

2.4 Matrix Types

The following section follow from [4].

2.4.1 Symmetric Matrix

A real n× n matrix A is called symmetric if

AT = A.
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2.4.2 Positive Definite Matrix

Consider a real n× n matrix A, A is called positive definite if

xT Ax > 0

for all nonzero vectors x ∈ Rn, where xT denotes the transpose of x.

A positive definite matrix is a Symmetric Matrix in which all of whose eigenvalues

are positive. Or symmetric matrix A is called positive definite if and only if Di > 0,

i = 1, 2, ..., n, where Di denotes leading principal minors.

2.4.3 Negative Definite Matrix

Consider a real n× n matrix A, A is called negative definite if

xT Ax < 0

for all nonzero vectors x ∈ Rn, where xT denotes the transpose of x.

A Negative definite matrix is a Symmetric Matrix in which all of whose eigenvalues

are negative. Or symmetric matrix A is called negative definite if and only if

(−1)iDi > 0, i = 1, 2, ..., n, where Di denotes leading principal minors.

If A satisfies none of the above then it is indefinite.

2.4.4 The Rayleigh Quotient

The set of values assumed by the quadratic from xT Ax on sphere xT x = 1 is

precisely the same set taken by the quadratic from yT Λy = λ1y
2
1+λ2y

2
2+. . .+λNy2

N

on yT y=1, Λ = T T AT , y = Tx, with T orthogonal. Let us henceforth suppose

that

λ1 ≥ λ2 ≥ . . . ≥ λN

We readily obtain the representations

λ1 = max
yTΛy

yTy
= max

xTAx

xTx

λN = max
yTΛy

yTy
= max

xTAx

xTx
(2.8)
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The quotient

q(x) =
xT Ax

xT x

is often called the Rayleigh quotient.

From the relation in (2.8), we see that for all x we have

λ1 ≥
xT Ax

xT x
≥ λN . (2.9)

2.4.5 Square Roots Matrix

Since a positive definite matrix represents a natural generalization of a

positive number, it is interesting to inquire whether or not a positive definite

matrix possesses a positive definite square root.

Proceeding as in Sec. 2.4.4, we can define A
1
2 by means of the relation

A
1
2 = T


λ

1
2
1 0

λ
1
2
2

. . .

0 λ
1
2
N

 T T .

(2.10)

Lemma 2.4.1 [5] For any real vector D and E with appropriate dimension and any

positive scalar δ, we have

DE + ET DT ≤ δDDT + δ−1ET E.
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