
CHAPTER 2

PRELIMINARIES

In this chapter, we introduce some notations and definitions and theorems

that will be used in our research.

2.1 Some Basic Concept of Continuous functions

Definition 2.1.1 Let A ⊆ R, let f : A→ R, and let c ∈ A. We say that f is

continuous at c if, given any neighborhood Nε(f(c)) of f(c) there exists a neigh-

borhood Nδ(c) of c such that if x is any point of A ∩Nδ(c), then f(x) belongs to

Nε(f(c)).

Definition 2.1.2 Let A ⊆ R, let f : A→ R, If B ⊂ A, we say that f is continuous

onB if f is continuous at every point of B .

Theorem 2.1.3 Let A ⊆ R, let f : A → R, and let c ∈ A. Then the following

conditions are equivalent.

(i) f is continuous at c; that is, given any neighborhood Nε(f(c)) of f(c) there

exists a neighborhood Nδ(c) of c such that if x is any point of A∩Nδ(c), then f(x)

belongs to Nε(f(c)).

(ii) Given any ε > 0 there exists δ > 0 such that for all x ∈ A with |x − c| < δ,

then |f(x)− f(c)| < ε

(iii) If (xn) is any sequence of real numbers such that xn ∈ A for all n ∈ N

and (xn) converges to c, then the sequence (f(xn)) converges to f(c).

See [4] for more details.

Definition 2.1.4 Let A ⊆ R and let f : A→ R is said to be bounded on A if there

exists a constant M > 0 such that |f(x)| ≤M for all x ∈ A.

Theorem 2.1.5 (Boundedness Theorem) Let I := [a, b] be a closed bounded in-

terval and let f : I → R be continuous on I. Then f is bounded on I
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See [4] for more details.

Definition 2.1.6 Let A ⊆ R, let f : A→ R. We say that f is uniformly continuous

on A if for each ε > 0 there exists a δ(ε) > 0 such that if x, u ∈ A are any numbers

satisfying |x− u| < δ(ε), then |f(x)− f(u)| < ε .

Theorem 2.1.7 (Uniform Continuty Theorem) Let I be a closed bounded interval

and let f : I → R be continuous on I. Then f is uniformly continuous on I

See [4] for more details.

Definition 2.1.8 Let A ⊆ R and let f : A→ R. If there exists a constant M > 0

such that

|f(x)− f(u)| ≤M |x− u|

for all x, u ∈ A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz

condition) on A.

Theorem 2.1.9 (Rolle’s Theorem) Suppose that f is continuous on a closed in-

terval I := [a, b], that the deivative f ′ exists at every point of the open interval

(a, b), and that f(a) = f(b) = 0. Then there exists at least one point c in (a, b)

such that f ′(c) = 0.

See [4] for more details.

2.2 Some Concepts from Functional Analysis

2.2.1 Metric Space

Definition 2.2.1 A metric space is a pair (X, d),where X is a set and d a metric on

X, that is d : X× X −→ R is a function such that the following three conditions

are satisfied by all x, y and z in X;

(i) d(x, x) ≥ 0 and d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).
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Definition 2.2.2 Let (X, d) be a metric space. A sequence (xn) in X is said to

converges to x ∈ X if lim
n→∞

d(xn, x) = 0 and we write lim
n→∞

xn = x or xn −→ x.

Note that, whenever the limit exists, it is unique.

Definition 2.2.3 A sequence (xn) in a metric space X = (X, d) is said to be

Cauchy sequence if every ε > 0 there is an N = N(ε) such that

d(xm, xn) < ε for every m,n > N.

The space X is said to be complete if every Cauchy sequence in X converges.

Theorem 2.2.4 Every convergent sequence in a metric space is a Cauchy se-

quence.

See [10] for more details.

2.2.2 Normed Space

Definition 2.2.5 Let X be a vector space. A norm on X is a real-valued function

‖ · ‖ on X such that the following conditions are satisfied by all members x and

y of X and each scalar α:

(i) ‖ x ‖≥ 0 and ‖ x ‖= 0 if and only if x = 0.

(ii) ‖ αx ‖=| α |‖ x ‖

(iii) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖

The ordered pair (X, ‖ · ‖ ) is called a normed space. When there is no danger

of confusion, it is customary to use the same symbol, such as X,to denote the

normed space.

Definition 2.2.6 A complete normed space is said to be Banach space.

Example 1 Space C[a, b]. This space is a Banach space with norm given by

‖f‖ = max
x∈J

|f(x)|

where J = [a, b] .
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2.2.3 Space of Continuous functions

Let Ω be open bounded subset of Rn

Definition 2.2.7 C0(Ω)={f ∈ C0(Ω):f is bounded and uniformly continuous in

Ω} with the norm

‖f‖C0(Ω) = sup
x∈Ω

|f(x)|

If k ∈ N, Ck(Ω) is the set of functions f ∈ C0(Ω) whose derivatives of order

≤ k exist and are continuous. For f ∈ Ck(Ω) the notation

Dαf = Dα1
1 · · ·Dαn

n , Dj =
∂

∂xj

for |α| ≤ k where α = α1 + α2 + · · ·+ αn

Definition 2.2.8 Ck(Ω)={f ∈ Ck(Ω):Dαf ∈ C0(Ω), |α| ≤ k} with the norm

‖f‖Ck(Ω) = max
0≤|α|≤m

sup
x∈Ω

|Dαf(x)|

Note that Ck(Ω) is a Banach space.

2.2.4 Sequences of functions

Consider a sequence of functions

fn : X → Y (n = 1, 2, . . .),

where (Y, σ) is matric space. For the moment the space X need not carry a metric.

Definition 2.2.9 (Pointwise Convergence) Suppose that there is a function f :

X → Y such that, for each x in X,

σ(fn(x), f(x)) → 0

as n → ∞. We then say that (fn) converges to f on X, or, more specially,(fn)

converges pointwise to f on X
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Definition 2.2.10 (Uniform Convergence) Suppose that fn : X → Y is a sequence

of functions on set X to a metric space (Y, σ). The sequence (fn) is said to

converges uniformly to f : X → Y if

sup
x∈X

σ(fn(x), f(x)) → 0 as n→∞. (2.1)

The ε−N criterion for the condition (2.1) is often useful. Convergence for

each separate x in X means that, given ε > 0, there exists N = N(ε, x) such that

σ(fn(x), f(x)) < ε for all n ≥ N . The convergence is uniform if and only if it is

possible to choose N = N(ε), independent of x, such that

σ(fn(x), f(x)) < ε , ∀n ≥ N,∀x ∈ X.

We note that in the space B(X,Y ) of bounded functions f : X → (Y, σ)

was defined by

ρ(f, g) = sup
x∈X

σ(f(x), g(x)).

Thus, for functions in B(X, Y ), uniform convergence is identical with convergence

in the metric space (B(X, Y ), ρ). If, in particular, Y is R1, then

ρ(f, g) = sup
x∈X

|f(x)− g(x)|

and, for bounded real valued functions, uniform convergence is the same as con-

vergence in the metric space (B(X), ρ).

Theorem 2.2.11 (General Principle of Uniform Convergence)

A necessary and sufficient condition for the sequence (fn) of real or complex valued

functions on set X to be uniformly convergent is that, given ε > 0, there exists N0

such that

sup
x∈X

|fm(x)− fn(x)| < ε ,m, n ≥ N0

See [5] for more details.
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2.3 Differential Equations

Definition 2.3.1 An equation involving derivatives of one or more dependent vari-

ables with respect to one or more independent variables is called a differential

equation (DE).

Example 2 For examples of differential equations we list the following:

d2y

dx2
+ xy(

dy

dx
)2 = 0, (2.2)

d4x

dt4
+ 5

d2x

dt2
+ 3x = sin t, (2.3)

∂v

∂s
+
∂v

∂t
= v, (2.4)

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0. (2.5)

Definition 2.3.2 A differential equation involving ordinary derivatives of one or

more dependent variables with respect to a single independent variable is called

an ordinary differential equation (ODE).

Example 3 Equations (2.2) and (2.3) are ordinary differential equations. In equa-

tion (2.2) the variable x is the single independent variable, and y is a dependent

variable. In equation (2.3) the independent variable is t, whereas x is dependent.

Definition 2.3.3 A differential equation involving partial derivatives of one or more

dependent variables with respect to more than one independent variable is called

a partial differential equation (PDE).

Example 4 Equations (2.4) and (2.5) are partial differential equations. In equa-

tion (2.4) the variables s and t is are independent variables, and v is a dependent

variable. In equation (2.5) there are three independent variables: x, y, and z in

this equation u is dependent.

Definition 2.3.4 The order of the highest ordered derivative involved in a differ-

ential equation is called the order of the differential equation.
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Example 5 The ordinary differential equation (2.2) is of the second order, since

the highest derivative involved is a second derivative. Equation (2.3) is an ordinary

differential equation of the fourth order. The partial differential equations (2.4)

and (2.5) are of the first and second orders, respectively.

Definition 2.3.5 A linear differential equation of order n, in the dependent variable

y and the independent variable x, is an equation that is in, or can be expressed

in, the form

a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ ...+ an−1(x)

dy

dx
+ an(x)y = b(x),

where a0 is not identically zero.

Example 6 The following ordinary differential equations are both linear. In each

case y is the dependent variable.

d2y

dx2
+ 5

dy

dx
+ 6y = 0,

d4y

dx4
+ x2 d

3y

dx3
+ x3 dy

dx
= xex.

Definition 2.3.6 A nonlinear differential equation of order n, in the dependent

variable y and the independent variable x, is an equation that is in, or can be

expressed in, the form

a0
dny

dxn
+ a1

dn−1y

dxn−1
+ ...+ an−1

dy

dx
+ any = b(x),

where a0, a1, ..., an are functions of x, y, y(1), ..., y(n−1).

Example 7 The following ordinary differential equations are all nonlinear:

d2y

dx2
+ 5

dy

dx
+ 6y2 = 0,

d2y

dx2
+ 5(

dy

dx
)3 + 6y = 0.
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2.4 Initial and Boundary Value Problems

2.4.1 Initial Value Problems

We are often interested in solving a differential equation subject to pre-

scribed side conditions. That is the conditions that are imposed on the unknown

solution y = y(x) or its derivatives. On some interval I containing x0, the problem

dny

dxn
= f(x, y, y′, ..., y(n−1)),

y(x0) = y0, y
′(x0) = y1, ..., y

(n−1)(x0) = yn−1,

where y0, y1, ..., yn−1 are arbitrarily specified real constants, is called an initial

value problem (IVP). For example,

y′ = sinx, y(π) = 1,

and

y′′ + 5y′ = e2x, y(π) = 1, y′(π) = 0

are first and second-order initial value problems, respectively.

2.4.2 Boundary Value Problems

Another type of problem consists of solving a differential equation of order

two or higher in which the dependent variable y or derivatives are specified at

different points. A problem such as

y′′ + p(x)y′ + q(x)y = f(x) , x ∈ (a, b),

that satisfies the boundary conditions

a11y(a) + a12y
′(a) + b11y(b) + b12y

′(b) = c1,

a21y(a) + a22y
′(a) + b21y(b) + b22y

′(b) = c2. (2.6)

is called a boundary value problem (BVP). The condition in (2.6) are examples

of linear boundary conditions. When c1 = c2 = 0, we say that the boundary

conditions are homogeneous ; otherwise, we refer to them as nonhomogeneous.
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There are special types of boundary conditions that occur frequently in

applications. They are

(i) Separated: a1y(a) + a2y
′(a) = c1 , b1y(b) + b2y

′(b) = c2.

(ii) Dirichlet: y(a) = c1 , y(b) = c2.

(iii) Neumann: y′(a) = c1 , y′(b) = c2.

(iv) Separated: y(−T ) = y(T ) , y′(−T ) = y′(T ).

Notice that the Dirichlet and Neumann conditions are special types of

separated boundary conditions.

For boundary value problems involving third or higher-order equations,

one usually specifies the same number of boundary conditions as the order of the

equation. When the order is even, these boundary conditions are often separated

with half the conditions at the endpoint x = a and half at x = b.

A solution of the previous problem is a function satisfying the differential

equation on some interval I, containing a and b, whose graph passes through the

two point (a, y0) and (b, y1). For example,

y′′ + 2y′ = ex, y(0) = 1, y(π) = 1.

y(4) + λy = f(x), y(0) = y′′(0) = 0, y(L) = y′′(L) = 0.

The second example is a fourth order eigenvalue problem that occur in con-

tinuum mechanics and, in particular, in vibration and bending problems. Where

y is transverse displacement of a uniform elastic beam length L. If the beam has

linear density ρ, cross-sectional moment of inertia I, Young’s modulus of elasticity

E, then λ = Kρ/EI, where K is a constant to be determined. And f(x) is load

on the beam with the simply supported at its ends.

2.5 Existence and Uniqueness Theorems

2.5.1 First-order systems

Consider the following system of n first order differential equations:

y′1 = f1(x, y1, y2, ..., yn)
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y′2 = f2(x, y1, y2, ..., yn)

...
... (2.7)

y′n = fn(x, y1, y2, ..., yn)

where yi, (i = 1, 2, ..., n) are real valued functions of the independent variable x

and fi, (i = 1, 2, ..., n) are real valued functions of x, y1, ..., yn.

Theorem 2.5.1 Let the functions fi(x, y1, ..., yn), (i = 1, 2, ..., n) be defined for x

in an interval I and the yr in regions Dr of the complex plane, where each Dr has

at least one interior point. Let a be a point in I and, for each r, br be an interior

point of Dr. Let there be a closed bounded sub-interval I0 of I containing a and,

for each r, a disk Er of the form |yr − br| ≤ β(β > 0) lying in Dr such that the

following two conditions are satisfied.

(i) For each i and any fixed values of the yr in Er, fi(x, y1, ..., yn) is a continuous

function of x in I0.

(ii) For 1 ≤ i ≤ n, for all x in I0, and for all yr, y
′
r in Er,

|fi(x, y
′
1, ..., y

′
n)− fi(x, y1, ..., yn)| ≤ A(|y′1 − y1|+ ...+ |y′n − yn|), (2.8)

where A is independent of x and the yr and y′r.

Then, if a is not an end-point of I0, there is a number h > 0 such that the system

(2.7) has a solution {φi(x)}(i = 1, 2, ..., n) which is valid for |x− a| ≤ h and

satisfies the condition

φi(a) = bi (i = 1, 2, ..., n). (2.9)

Further, {φi(x)} is unique in the sense that there is no second solution {φi(x)}

of (2.7) which is valid in sub-interval of |x− a| ≤ h and satisfies (2.9). If a is

the left-or right-hand end-point of I0, the result still holds, except that the interval

|x− a| ≤ h is replaced by a ≤ x ≤ a+ h or a− h ≤ x ≤ a, respectively.

See [9] for more details.

Theorem 2.5.2 Let ∂fi/∂yr exist for r = 1, 2, ..., n and be continuous for all x in

I0, y1 in E1, ..., yn in En, where Ei is the disk {yi| |yi − bi| ≤ β}. Then (2.8) is

satisfied with some constant A.
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See [9] for more details.

2.5.2 Differential equations of order n

Now, consider the nth order differential equations.

y(n)(x) = f(x, y(x), y′(x), ..., y(n−1)(x)). (2.10)

The first-order system is following one:

y′0(x) = y1(x)

y′1(x) = y2(x)

... (2.11)

y′n−2(x) = yn−1(x)

y′n−1(x) = f(x, y0(x), y1(x), ..., y(n−1)(x)).

If {φi(x)}(i = 0, 1, ..., n − 1) is a solution of (2.11), the first n − 1 equations in

(2.11) show in turn that φi(x) = φ
(i)
0 (x)(i = 1, 2, ..., n− 1), while the last one then

shows that

φ
(n)
0 (x) = f(x, φ0(x), φ

′
0(x), ..., φ

(n−1)
0 (x)).

Hence φ0(x) is solution of (2.10). Thus any solution {φi(x)} of (2.11) give rise in

this way to a solution φ(x) of (2.10) and the connection between the two solutions

is

φi(x) = φ
(i)
0 (x)(i = 0, 1, ..., n− 1).

Conversely, if φ(x) is a solution of (2.10), then clearly {φi(x)}(i = 0, 1, ..., n − 1)

is a solution of (2.11). We can therefore apply Theorem 2.3.1 to the system (2.11)

to obtain the corresponding theorem for (2.10) as follows.

Theorem 2.5.3 Let the functions f(x, y0, ..., yn−1) be defined for x in an interval

I and the yr in regions Dr of the complex plane, where each Dr has at least one

interior point. Let a be a point in I and, for each r, br be an interior point of Dr.

Let there be a closed bounded sub-interval I0 of I containing a and, for each r, a
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disk Er of the form |yr − br| ≤ β(β > 0) lying in Dr such that the following two

conditions are satisfied.

(i) For any fixed values of the yr in Er, f(x, y0, ..., yn−1) is a continuous function

of x in I0.

(ii) For all x in I0, and for all yr, y
′
r in Er,

|f(x, y′0, ..., y
′
n−1)− f(x, y0, ..., yn−1)| ≤ A(|y′0 − y0|+ ...+ |y′n−1 − yn−1|),

where A is independent of x and the yr and y′r.

Then, if a is not an end-point of I0, there is a number h > 0 such that the equation

(2.10) has a unique solution {φi(x)} which is valid for |x− a| ≤ h and satisfies

the condition

φi(a) = bi (i = 0, 1, ..., n− 1). (2.12)

If a is the left-or right-hand end-point of I0, the result still holds, except that the

interval |x− a| ≤ h is replaced by a ≤ x ≤ a+ h or a− h ≤ x ≤ a, respectively.

See [9] for more details.

2.5.3 Homogeneous linear differential equations

After the previous general theory, we consider the linear differential equa-

tion and start with the homogeneous equation

a0(x)y
(n)(x) + a1(x)y

(n−1)(x) + · · ·+ an(x)y(x) = 0 , (2.13)

where the assumptions about the coefficients ar(x) will always be that they are

continuous in an interval I and a0(x) 6= 0 for any x in I.

Property 2.5.4 If φ1(x) and φ2(x) are two solutions of (2.13), then c1φ1(x) +

c2φ2(x), where c1 and c2 are constants, is also a solution.

Property 2.5.5 If φ(x) is a solution of (2.13) such that, for some point x0 in I,

φ(i)(x0) = 0 (i = 0, 1, ..., n− 1), then φ(x) = 0 for all x in I.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



15

Definition 2.5.6 A finite set of functions fm(x) (m = 1, 2, ...,M) is defined in an

interval J is said to linearly independent in J if the equation

α1f1(x) + · · ·+ αMfM(x) = 0 , (2.14)

where the rm are complex constants, holds for all x in J only when α1 = . . . =

αM = 0. If the equation is possible for values of the αm not all zero, then the set

is said to be linearly dependent in J .

Definition 2.5.7 A set of n solution of (2.13) is said to be a fundamental set for

(2.13) if it is linearly independent in I.

Lemma 2.5.8 Let bij (i, j = 1, 2, ..., n) be any real or complex numbers and let a

be any point in I. For each j, let φj(x) be the solution of (2.13) which satisfies

the initial conditions

φ
(i−1)
j (a) = b(ij) (i = 1, 2, ..., n). (2.15)

Then a necessary and sufficient condition that the φj(x) form a fundamental set

for (2.13) is that det(b(ij)) 6= 0.

See [9] for more details.

Theorem 2.5.9 Let φ(x) be any solution of (2.13). Then there are unique con-

stants cj such that

φ(x) = c1φ1(x) + · · ·+ cnφn(x) (i = 1, 2, ..., n) (2.16)

for all x in I.

See [9] for more details.
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2.5.4 The Wronskian

Definition 2.5.10 Let the functions fm(x) (m = 1, 2, ...,M) be defined in an inter-

val J , each having M − 1 derivatives in J . Then the M ×M determinant∣∣∣∣∣∣∣∣∣∣∣∣

f1(x) f2(x) · · · fM(x)

f ′1(x) f ′2(x) · · · f ′M(x)
...

...

f
(M−1)
1 (x) f

(M−1)
2 (x) · · · f

(M−1)
M (x)

∣∣∣∣∣∣∣∣∣∣∣∣
is called Wronskian of f1(x), . . . , fM(x) and is denoted by W (f1, . . . , fM)(x).

Theorem 2.5.11 Let φ(x) be any solution of (2.13). Then there are unique con-

stants cj such that

φ(x) = c1φ1(x) + · · ·+ cnφn(x) (i = 1, 2, ..., n) (2.17)

for all x in I.

See [9] for more details.

Theorem 2.5.12 Let φ1(x), . . . , φn(x) be n solution of (2.13). Then W (φ1, . . . , φn)(x)

is either not zero for any x in I or zero for x in I. The first case occurs when

φ1(x), . . . , φn(x) form a fundamental set for (2.13) and the second when they do

not.

See [9] for more details.

2.5.5 Inhomogeneous linear differential equations

Consider the inhomogeneous linear differential equations

a0(x)y
(n)(x) + a1(x)y

(n−1)(x) + · · ·+ an(x)y(x) = b(x) , (2.18)

where the assumptions about the coefficients ar(x) will always be that they are

continuous in an interval I, a0(x) 6= 0 for any x in I and b(x) is assumed to be

continuous in I.
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Property 2.5.13 Let ψ1(x) and ψ2(x) be two solutions of (2.18). Then ψ1(x) −

ψ2(x) is a solution of the corresponding homogeneous equation (2.13).

Theorem 2.5.14 Let φ1(x), . . . , φn(x) form a fundamental set for (2.13) and let

ψ0(x) be a solution of (2.18). Then, If ψ(x) is any solution of (2.18), there are

unique constants c1, . . . , cn such that

ψ(x) = c1φ1(x) + · · ·+ cnφn(x) + ψ0(x). (2.19)

See [9] for more details.

2.6 Variation of Parameters for Inhomogeneous linear

second order differential equation

In this section we present a general method, called variation of parameters,

for finding a particular solution. This method applies even when the coefficients

of the differential equation are function of x, provided we know a fundamental

solution set for the corresponding homogeneous linear equation.

Consider the inhomogeneous linear second order differential equation

L[y](x) := y′′ + p(x)y′ + q(x)y = g(x), (2.20)

where the coefficient of y′′ is taken to be 1, and let {y1(x), y2(x)} be a fundamental

solution set for the corresponding homogeneous equation

L[y] = 0 .

Then we know that the solutions to this homogeneous equation are given by

yh(x) = c1y1(x) + c2y2(x) , (2.21)

where c1 and c2 are constants. To find a particular solution to the nonhomogeneous

equation, the idea behind variation of parameters is to replace the constants in

(2.21) by functions of x. That is, we seek a solution of (2.20) of the form

yp(x) = v1(x)y1(x) + v2(x)y2(x) . (2.22)
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Because we have introduced two unknown functions, v1(x) and v2(x), it

is reasonable to expect that we can impose two equations on these functions.

Naturally, one of these equations should come from (2.20). Let’s therefore plug

yp(x) given by (2.22) into (2.20). To accomplish this, we must first compute y′p(x)

and y′′p(x). From (2.22), we obtain

y′p = (v′1y1 + v′2y2) + (v1y
′
1 + v2y

′
2).

To simplify the computation and to avoid second order derivatives for the un-

knowns v1, v2 in the expression for y′′p , we impose the requirement

v′1y1 + v′2y2 = 0 ; (2.23)

thus the formula for y′p becomes

y′p = v1y
′
1 + v2y

′
2 . (2.24)

and so

y′′p = v′1y
′
1 + v′2y

′
2 + v′1y

′′
1 + v′2y

′′
2 . (2.25)

Now, substituting yp, y
′
p and y′′p , as given in (2.22),(2.24) and (2.25) into (2.20),

we find

g = L[yp]

= (v′1y
′
1 + v′2y

′
2 + v′1y

′′
1 + v′2y

′′
2) + p(v1y

′
1 + v2y

′
2) + q(v1y1 + v2y2)

= (v′1y
′
1 + v′2y

′
2) + v1(y

′′
1 + py′1 + qy1) + v2(y

′′
2 + py′2 + qy2)

= (v′1y
′
1 + v′2y

′
2) + v1L[y1] + v2L[y2] . (2.26)

Since y1 and y2 are solutions to the homogeneous equation, we have L[y1] = L[y2] =

0. Thus (2.26) reduce to

v′1y
′
1 + v′2y

′
2 = g . (2.27)

To summarize, if we can find v1 and v2 that satisfy both (2.23) and (2.27),

that is,

v′1y1 + v′2y2 = 0 , v′1y
′
1 + v′2y

′
2 = g , (2.28)
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then yp given by (2.22) will be a particular solution to (2.20). To determine v1 and

v2, we first solve the linear system (2.28) for v′1 and v′2. Algebraic manipulation of

Cramer’s rule immediately gives

v′1(x) =
−g(x)y2(x)

W [y1, y2](x)
, v′2(x) =

g(x)y1(x)

W [y1, y2](x)

where W [y1, y2](x), which occurs in the denominator, is the Wronskian of y1(x)

and y2(x). Notice that this Wronskian is never zero because {y1(x), y2(x)} is a

fundamental solution set. Upon

v1(x) =

∫
−y2(s)g(s)

W [y1, y2](s)
ds , v2(x) =

∫
y1(s)g(s)

W [y1, y2](s)
ds (2.29)

2.7 Green’s functions

In this section we derive an integral representation for the solution to a

nonhomogeneous boundary value problem. Namely, we show that the solution

can be expressed in the form

y(x) =

∫ b

a

G(x, s)f(s)ds, (2.30)

where the kernel function, G(x, s), is called a Green’s function, or an influence

function. This representation is known to exist for very general problem. However,

we will consider only the regular Sturm-Liouvill boundary value problems

L[y](x) = −f(x) , x ∈ (a, b) (2.31)

a1y(a) + a2y
′(a) = 0 (2.32)

b1y(b) + b2y
′(b) = 0 (2.33)

where operator defined by

L =
d

dx

(
p(x)

d

dx

)
+ q(x) (2.34)

where a1, a2, b1, b2 are real and p(x), p′(x), q(x) are continuous on [a, b] with p(x) >

0 on [a, b]. While it is not necessary, it is customary in the present context to write

−f(x), rather than f(x), as the nonhomogeneous term in equation (2.31).
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Throughout this section we assume that the corresponding homogeneous

problem (f(x) ≡ 0) has only the trivial solution, or equivalently, we assume that

λ = 0 is not an eigenvalue. We will follow from the Fredholm alternative following.

Fredholm alternative, If the corresponding homogeneous problem (f(x) ≡

0) of problem (2.31)-(2.33) has only the trivial solution and λ = 0 is not an

eigenvalue then the nonhomogeneous problem (2.31)-(2.33) has a solution. This

solution is unique, since the corresponding homogeneous problem has a unique

solution.

We will use the method of variation of parameters to obtain an integral

representation for the solution to (2.31)-(2.33). To begin, choose two nontrivial

solutions y1 and y2 to the homogeneous equation L[y] = 0. Pick y1 so that it

satisfies first boundary condition (2.32) and y2 it satisfies second boundary condi-

tion (2.33). The existence of y1 and y2 follows from the existence and uniqueness

theorem for initial value problems, since one can choose initial conditions at a (re-

spectively b) so that the boundary condition (2.32) (respectively (2.33)) is satisfied

and the solution is nontrivial.

Before we can use y1 and y2 with the method of variation of parameters,

we must verify that y1 and y2 are linearly independent. Note that if y1 and y2

were linearly dependent, then one would be a constant multiple of the other, say

y1 = cy2. Since y2 satisfies (2.33), it follows that y1 also satisfies (2.33).

To apply the formulas from the variation of parameters method, we first

write the nonhomogeneous equation (2.31) in the standard form

y′′ +
p′

p
y′ +

q

p
y = −f

p

A particular solution to this equation is then given by

y(x) = c1(x)y1(x) + c2(x)y2(x) (2.35)

where

c′1(x) =
f(x)y2(x)

p(x)W [y1, y2](x)
, c′2(x) =

f(x)y1(x)

p(x)W [y1, y2](x)
(2.36)
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and

W [y1, y2] =

∣∣∣∣∣∣ y1 y2

y′1 y′2

∣∣∣∣∣∣ = y1y
′
2 − y′1y2,

W [y1, y2] is the Wronskian of y1 and y2. Since we are free to pick the constants in

the antiderivatives for c′1 and c′2, it will turn out to be convenient to choose

c1(x) =

∫ b

x

−y2(s)f(s)

p(s)W [y1, y2](s)
ds (2.37)

and

c2(x) =

∫ x

a

−y1(s)f(s)

p(s)W [y1, y2](s)
ds (2.38)

Substituting into (2.35), we obtain the following solution

y(x) = y1(x)

∫ b

x

−y2(s)f(s)

p(s)W [y1, y2](s)
ds+ y2(x)

∫ x

a

−y1(s)f(s)

p(s)W [y1, y2](s)
ds

=

∫ b

a

G(x, s)f(s)ds (2.39)

where

G(x, s) =

 −y2(x)
y1(s)

p(s)W [y1,y2](s)
, a ≤ s ≤ x

−y1(x)
y2(s)

p(s)W [y1,y2](s)
, x ≤ s ≤ b

Using the fact that y1 and y2 satisfy the equation L[y] = 0, one can show that

p(x)W [y1, y2](x) = C , x ∈ [a, b] (2.40)

where C is a constant. Hence G(x, s) has the the simpler form

G(x, s) =

 −y2(x)y1(s)/C , a ≤ s ≤ x

−y1(x)y2(s)/C , x ≤ s ≤ b
(2.41)

where C is given by equation (2.40). The function G(x, s) is called the Green’s

function for the problem (2.31)-(2.33).
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