CHAPTER 3
MAIN RESULTS

3.1 Lemmas

The following lemmas play a crucial role in the proofs of our main result.

Let A1, Ay be the roots of the polynomial P(\) = A\? — a) + b.then
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from (H2) and (3.1) it is clear that A\; > 0 and we have
—ar? —7mt<b < %
0<a®—4b<a®—4(—an? —7t) = (a + 27°)?
\/m < a+2r?
—o2m? < a—+a—4b
thus we have \y > —72
Let Gi(z,s)(i = 1,2) be the Green’s function of the following boundary

value problem.

u'(z) = Aiu(z) = —g(z), (3.2)

Lemma 3.1.1 Green’s function of the problem (3.2)-(5.83) satisfy

Gi(z,s) > 0,Vx,s € (0,1), (i = 1,2)

Proof. Set w; = /|\] -
If \; > 0, then G;(z, s) of the problem (3.2)-(3.3) is given by

sinh w;z-sinh w; (1—s)

w; sinh w; y X S s
G(z,s) = , ,
sinh w; s-sinh w; (1—x)
- s<uw
w; sinh w; ’

If \; =0, then G;(z,s) of the problem (3.2)-(3.3) is given by
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z(l—3s) , ©<s
G(z,s) =
s(l—x) , s<xzx
If —72 < \; < 0, then G;(z, s) of the problem (3.2)-(3.3) is given by

sin w;x-sinw; (1—s)

w; sinw; y 10 S S
G(z,s) = . A
sinw;s-sinw; (1—x
Z—M 5 S S T
w; sinw;

Since x, s € (0,1) and from Gi(z, s), thus G;(z,s) > 0 Vz,s € (0, 1)
Consider problem (3.2) with following boundary condition

The solution of (3.2) and (3.4) is given by
1
u(z) = / Gi(z,s)g(s)ds +1(1 — z) + mzx (3.5)
0

Lemma 3.1.2 Let A > —n% if u(z) satisfies
u'(z) — Au(z) >0 , x€(0,1)
w(0) <0 , u(l1)<0
thenu(z) <0 , z€]0,1]

Proof.  Set g(x) < 0in (3.2) and I, < 0 in (3.4) and from Lemma 3.1.1 we

have u(z) < 0.

Lemma 3.1.3 Let A > —x% if u(z) satisfies
u'(x) — du(z) <0 , z€(0,1)
w(0) >0 , u(l)>0
then u(z) >0 , z€0,1]

Proof.  Set g(x) > 0 in (3.2) and I, > 0 in (3.4) and from Lemma 3.1.1 we
have u(x) > 0.
Now we use property of Green’s function (Lemma 3.1.1) to prove maximum
principle L from (1.7)
L:F — C[0,1]
where F' defined by
F = {ue C*0,1]u(0) > 0,u(1) > 0,4"(0) < 0,u"(1) <0}
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Lemma 3.1.4 Ifu € F satisfies Lu > 0, then u(z) >0 , x € [0,1]

Proof. Consider the boundary value problem
Lu = u®(z) — au(z) + bu(z) = (D? = Xo)(D?* — A\ )u(z) > 0
let y(z) = (D? = \)u(z) = u"(x) — M\u(x)
then (D% — \)y(z) >0 ie.  y'(z) — Ay(z) >0
since Ay > —m2 by Lemma 3.1.2 we have
y(z) <0, xel0,1]
e u'(x) — Mu(x) <0
since A\; > 0 by Lemma 3.1.3 we have
u(x) <0, z€l0,1]

Lemma 3.1.5 [8] Given a,b € R , the problem

u(z) — av (z) + bu(z) = 0 (3.6)

for some k£ € N

3.2 Main Theorems

Definition 3.2.1 We say 8 € C*[0,1] a lower solution for (1.2)—(1.3), if 3 satisfies
ﬁ(‘*)(ﬂs) < f(x,B(2), 8"(x)), € (0,1)
plo)y<o0 , B(1)<0
3"(0) > p"(1)

Definition 3.2.2 We say o € C*0,1] an upper solution for (1.2) — (1.3), if «

I\/

satisfies
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Theorem 3.2.3 Suppose there exist 3 and «, lower and upper solutions, respec-

tively, for the problem (1.2) — (1.3) which satisfy
B<a , B"+Ma—p)=d", (3.8)
f satisfies (H1) and following the inequality
fx,us,v) — fx,up,v) > =blus — uy), (3.9)
forp<u;<uy<a , veR ,z€][0,1].
flz,u,v) = flz,u,v1) < alve —vy), (3.10)

forva+A(a—pB) > v , o"=ANa—0F) <v,ve <"+ XNa—p) , ue R ,z€]0,1]
where a and b satisfy (H2), \, = “-Ve=1b
then there exist two monotone sequence {8,} and {a,} € C*[0,1], non increas-

ing and non decreasing, respectively, with By = [ and oy = «, which converge

uniformly to the extremal solution in |3, a] of the problem (1.2) — (1.3)

Proof.  Consider the problem
Lu = ut(z) — au"(z) + bu(x) = fi(z,n(x), 7" (z)), = € (0,1) (3.11)

with boundary condition (1.3), n € C?[0,1].
Since a, b satisfy (H2). By lemma (3.1.5) and Fredholm alternative the

problem (3.11) with boundary condition (1.3) has a unique solution u.

Define T : C?[0,1] — C*[0,1] by
Tn=wu (3.12)

we divide the proof into three steps.
Step 1. To show that
TG CG (3.13)

Where G ={neC?0,1]|8<n<a,a”"+ \(a—08)<n" <3+ \(a—pB)}is
a nonempty bounded closed subset in C?[0, 1].
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In fact, for £ € G, set w = T¢. From the definitions of o and G we have
that
Lo(z) > f(z,a(z),d"(z)) — ad”(x) + ba(x) (3.14)

Lo(z) = f(x,&(x),§"(x)) = af"(x) + b¢(x) (3.15)

then

L(a —w)(z) = f(z,a(z),a"(x) = f(z, §(=),§" () — ala — §)"(z) + b(a — §)(z)

(3.16)
from (3.9) and (3.10) we have
[z, a(x),v) = f(z,6(x),v) = —bla = )(2)
f(@,u, () = flz,u,§"(2) 2 ala — §)"(x)
Lo —w)(x) >0 (3.17)
from « is upper solution we have
a(0) >0 , a(l)>0, &(0)<0, a"(1)<0
from w is solution of (3.11) we have
w0)=0, wl)=0, w"0)=0, V(1)=0
(¢ =w)(0) >0, (a—w)(1)>0 (3.18)
(a—w)"(0)<0 , (a—w)'(1)<0 (3.19)

By lemma (3.1.4) we have (a —w)(x) > 0, i.e. a(z) > w(z) for z € [0, 1].
From (3.17) we have

(D* = X)(D? = M) (e —w)(z) = 0

let y(z) = (D*—\)(a—w)(z) = (a—w)"(z) — A\ (a—w)(z) then (D*—Xy)y(z) >0
i.e. ¥ (x) — Ay(x) > 0. Since \; > 0,\y > —7% and (o — w)(z) € F, by Lemma
(3.1.2) we obtain



a(r) = M(a —w)(r) SW'(x) , zel0,1]
a'(r) =X(a=B)(z) <w'(z) , zcl01]
Similarly we can prove that f(z) < w(x) for « € [0, 1]
Lp(z) < f(x, B(z), 5" (2)) — af"(x) + bB(z) (3.20)
then

L(w = B)(x) = f(x,&(x),§"(x)) = f(z, B(x), B"(x)) — a(& = B)"(x) + b(§ — B)(x)

(3.21)
from (3.9) and (3.10) we have
flz,u,&"(z) — flz,u, 8" (2) = a(§ — B)"(2)
L(w=0)(x)>0 (3.22)
from ( is lower solution we have
p0)<0 , p1)<0, p0)=>0, B"(1)>0
then we obtain
(w=05)(0)>0 , (w=p)(1)>0 (3.23)
(w=0)"(0)<0 , (w=—p)"1)=<0 (3.24)

By Lemma (3.1.4) we have (w — #)(z) > 0, i.e. w(z) > B(z) for x € [0, 1].
From (3.22) we have

(D? = X)(D? = M)(w — B)(w) > 0

let y(z) = (D* = A1) (w=p)(2) = (w—B)"(x) = A(w—pB)(x) then (D*—A)y(z) > 0
i.e. y'(x) — Ay(x) > 0. Since \; > 0,y > —7% and (w — B)(z) € F, by Lemma
(3.1.2) we obtain



i.e.

Thus (3.13) holds.
Step 2. Let w; = Tn,us = Tny, where ny,m, € G satisfy 1 < o
andnj (z) < 7f(x) + M (o = 3)(x). We obtain

Luy(z) = fi(z,m (@), n) () = f(z,m(x),n(x)) — anf(z) + by (2)

Lug(z) = fi(z,m(x), ny(x)) = f(o,n2(2),n5(x)) — ang (x) + bna ()

then we have

L{uz—ur)(x) = f(z,m2(x), 75 (x)) = f (2, (), mf{ () —a(n2—m)" (x) +-b(1a—m) (x)

(3.25)
from (3.9) and (3.10) we have
f<m7772(x)7 U) - f(ZL‘, n1($)’ U) > _b(772 - 771)(17)
f(.%', Uﬂ?g(@) - f(.%', u, 77/1,<:U)) > a(772 =N 771)”(95)
L(uy — uy)(z) > 0. (3.26)

Since u; and ug are solutions of (3.11) and (1.3), thus u; and us satisfy
(uz —u)(0) =0, (uz = u1)(1) =0

(uz —u1)"(0) =0, (ug —u1)"(1) =0
By Lemma (3.1.4) we have (uz — uy)(x) > 0, i.e. u; < uy for z € [0, 1].
From (3.26) we have

(D? = X2)(D* = M) (uz — wr)(2) >0

let y(z) = (D? = A1) (uz — w1) (@) = (uz — u1)"(2) — A (uz — ur) ()
then (D? — X\o)y(x) > 0 ie. y"(z) — Ay(x) > 0. Since A\; > 0,y > —72 and
(ug —up)(x) € F, by Lemma (3.1.2) we obtain
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y(x) = (ug —u1)"(x) — M(ug —wy)(x) <0 , z€]0,1]

W) < (o) + Al — ) (&), 7€ [0,1]
uy(z) <ulf(x)+ M(a—0)(x) , x€]l0,1].

Thus this step we can show that

ur(z) Sup(w) , wy(r) <uf(z) + e — F)(@) (3.27)

From step 1 and step 2 if we choose 1,17y € G satisfy g < <y < «,
ny(z) < nf(x) + M(a— F)(z) and let uy = Ty, us = Ty then we obtain

Blx) < ui(z) < up(x) < af),
a’(z) = Mo = B)(z) < uf(w), up(x) < B"(x) + Mo = §)(x),
uy () < ui(x) + Ao — B)(2).
Step 3. The sequences {a,} and {3,} are obtained by recurrence:
an =T 1 3 Bo=TBu1 , ag=0,p=0n=12, .. (3.28)

From the results of step 1 and step 2, we get

f=Pp<bh < <fp<--<ap<-- <o <ap=a, (3.29)

"= M(a—=0) <ol Bl < 3"+ M(a— ). (3.30)

Moreover from the definition of 7', we have

o () — aay(x) + ban(2) = fil, an-i(2), ap L (2)),

) n—1

ie.,

a(z) = filz,ana(2), 0l (7)) + ac))(w) — boy(2)

< filwanea(@), 01 (2) + alB" + Mo = B)](z) — bB(x), (3.31)

@, (0) = an(1) = a(0) = al(1) = 0. (3.32)
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From (3.29),(3.30) and (3.31), since a, 8 € C*[0,1] and continuity of fi,
we have that there exists M1, 3 > 0 depending only on « and 3 (but not on n or
x) such that

(@) < Ml,g , Yz €0,1] (3.33)

Using the boundary condition (3.32)and Rolle’s theorem, we get that for each
n € N, there exist &, € (0, 1) such that

a®(E) =0 (3.34)

This together with (3.33) we have

a®(E,) + / oD (s)ds
én

< Ml (3.35)

and from (3.30) we have that there exists M2, 3 > 0 depending only on « and 3

(but not on n or x) such that
|l (x)| < M245 , Yz €[0,1] (3.36)

Using the boundary condition (3.32) and Rolle’s theorem, we get that for each
n € N, there exist ¢, € (0, 1) such that

A1(C) =0 (3.37)
This together with (3.36) we have

|k (2)] = < M2,p (3.38)

o)+ (o)

Cn
Thus, from (3.29), (3.33), (3.35), (3.36) and (3.38), we know that {«,} bounded
in C*[0,1]

Similarly, we obtain
B0 (@) = (@) + ba(x) = fi(z, Bus(@). By (2))
ie.,

B(@) = filz, Bama(@), B4 (2)) + By (x) — bBa(x)
< i@, Baaa(2), By (2) + a8 + Mo = B)](z) — bB(x) (3.39)
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3(0) = 8.(1) = 3,(0) = 3,(1) = 0 (3.40)

From (3.29),(3.30) and (3.39), since «, 3 € C*[0,1] and continuity of f;, we have
that there exists M3, 3 > 0 depending only on « and 3 (but not on n or x) such
that

1B(2)| < M345 , Yz €10,1] (3.41)

Using the boundary condition (3.40) and Rolle’s theorem, we get that for each
n € N, there exist ¢, € (0,1) such that

B (6n) =0 (3.42)
This together with (3.41) we have

18 ()] =

8960+ [ BO(s)ds
&n

< M3, (3.43)

and from (3.30) we have that there exists M4, g > 0 depending only on o and 3

(but not on n or x) such that
|B(@)| < Mdap , Vz €[0,1] (3.44)

Using the boundary condition (3.40) and Rolle’s theorem, we get that for each
n € N, there exist ¢, € (0,1) such that

Br(thn) =0 (3.45)
This together with (3.44) we have

|85(2)| = < Mdap (3.46)

Bn(Gn) + ] 3" (s)ds

Thus, from (3.29), (3.41), (3.43), (3.44) and (3.46), we know that {/3,,} bounded
in C*[0, 1]

Now, by using the fact that {c,,} and {3,} are bounded in C*[0,1], we
can conclude that {«,} and {f,} converge uniformly to the extremal solutions in
[0,1] of the problem (1.2) — (1.3) O

Let Ay = Ay =0, then a = b = 0. In this case, Theorem (3.2.3) reduces to

the following corollary, as in [12] Theorem (3.1).
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Corollary 3.2.4 Suppose there exist 3 and «, lower and upper solutions, respec-

tively, for the problem (1.2) — (1.3) which satisfy
f<a , B'=a" (3.47)
a=>b=0, [ satisfies (H1) and following the inequality
fz ug,v) = fx,u,v) >0, (3.48)
for p<u;<uy<a , veR ,z€][0,1].
flz,u,va) — f(z,u,v) <0, (3.49)

fora’" <wvy <wv, <p" , weR ,xe€l01]
then there exist two monotone sequence {B,} and {a,} € C*0, 1], non in-
creasing and non decreasing, respectively, with By = 3 and oy = «, which converge

uniformly to the extremal solution in [3, o] of the problem (1.2) — (1.3)

Example 3.2.5 Consider the boundary value problem

We can see that a = —%2 and b = 0 satisfy (H2), A\; = 0 and Ay = —%2. We try to

choose a(x) = sin(mx) for the upper solution and check by definition, we have
a(0) =a(l) =" (0)=a"(1) =0 ;o (z) =n*sin(rz),

[z, a(x),a"(z)) = (% + 5 )) sin(7).

For x € [0, 1], we obtain o™ (z) > f(z,a(x),a”(z)). Thus a(z) = sin(rz) be the
upper solution. Similarly, It is easy to check that G(x) = 0 be the lower solution.

And we have,
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satisfies (3.16), for f <u; <uy<a , vE€R ,x €[0,1].

f(x, ug,v) — flz,up,v) = () — ) sin(mz)

v

0

Y

—b<U2 2> Ul)

satisfies (3.17), for vo+ AMa—03) > v, o' —Ma=0) <wv,ve < "+ MNa—5),

ue R, xe|0,1].
2

Fuvg) = fleum) = (v =)
= a(ve —v1),

satisfies (3.18). Thus by Theorem (3.2.3) this problem has at least one solution u,

which satisfies 0 < u < sin(7z)

Example 3.2.6 Consider the boundary value problem

u®(z) + %u"(:z:) T u(e) = 2(1 = z) + ¥ sin(rz) — mt(u(@)?,

u(0) = u(1) = u’(0) = (1) = 0.

We can see that a = —§ and b = —%4 satisfy (H2), \; = #5 and \y = _12‘/5.

We choose a(x) = sin(mx) for the upper solution and check by definition, we have

a(0) = a(1) = " (0) =’ (1) =0 ;oW (x) = 7*sin(mz),
f(z,a(z),a"(z)) = %4 sin(mz) + (1 — ).

For x € [0, 1], we obtain a®(z) > f(z,a(r),a”(z)). Thus a(z) = sin(rz) be the
upper solution. Similarly, It is easy to check that f(x) = 0 be the lower solution.
And we have,

(B(z) = 0) < (a(x) = sin(rz)) , v €[0,1]

satisfies (3.16), for 6 <u; <wus <a , vE€ R ,xz €[0,1].

fz ug,v) — f(x,ug,v) = [%4 + 7t — (ug + uy)] sin(rx)
> [%4 + 7t — 2] sin(7x)

> —b(UQ — Ul)
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satisfies (3.17), for va + A —3) > v , o —AMa—0) <vi,ve < "+ MNa—f),
uw € R,xe[0,1].

71_2

flz,u,v) = flz,u,v) = —7(1)2—1}1)

= a(vy —vy),

satisfies (3.18). Thus by Theorem (3.2.3) this problem has at least one solution u,

which satisfies 0 < u < sin(rz) O



