## **CHAPTER 3**

## MAIN RESULTS

This chapter is divided into 3 sections. Several fixed point theorems of selfmappings in a complete metric space are given in Section 3.1. These results generalize those in [1] and [10]. In Section 3.2, several common fixed point theorems of two mappings are studied and we obtain many results which generalize those in [1] and [10]. In the last section, Section 3.3, we present some examples of applications.

## 3.1 Fixed Point of Selfmappings in Metric Spaces

**Lemma 3.1.1** Let (X, d) be a metric space, and let  $T : X \to X$ . Let  $x_0 \in X$  be fixed, define  $x_n = Tx_{n-1}, n \in N$ . If there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

then  $(x_n)$  is Cauchy in X.

**Proof.** Choose any  $x_0 \in X$  and define the sequence  $(x_n)$  by  $x_n = Tx_{n-1}, n \in N$ . Then

$$d(x_n, x_{n+1}) = d(x_n, Tx_n) \le \Phi(x_n) - \Phi(Tx_n) = \Phi(x_n) - \Phi(x_{n+1}).$$

Define  $a_n = \Phi(x_n), n = 1, 2, ...$  It is easy to see that the sequence  $(a_n)$  is non-negative real sequence and nonincreasing. Thus  $(a_n)$  is a convergent sequence, so it is Cauchy.

For  $m, n \in N$  with m > n, we have

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$
  
$$\le (\Phi(x_n) - \Phi(x_{n+1})) + (\Phi(x_{n+1}) - \Phi(x_{n+2})) + \dots + (\Phi(x_{m-1}) - \Phi(x_m))$$
  
$$= \Phi(x_n) - \Phi(x_m) = a_n - a_m.$$

Since  $(a_n)$  is Cauchy, it implies that  $(x_n)$  is Cauchy in X.

**Theorem 3.1.2** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

- (1)  $d(x,Tx) \le \Phi(x) \Phi(Tx), \forall x \in X,$
- (2)  $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Tx,y) + c_2d(Tx,x)\}, \forall x \neq y \in X,$

where  $c_1 > 0, c_2 > 0$  and  $c_1 + c_2 < 1$  Then T has a unique fixed point.

**Proof.** By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X. Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a fixed point of T.

**CaseI.** There exists 
$$m \in N$$
 such that  $x_n = x$  for all  $n > m$ . Then  
 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx)$ . Hence  $Tx = x$ .

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x), c_1 d(Tx, x_{n_k}) + c_2 d(Tx, x)\}.$$

By taking  $k \to \infty$ , we have

$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1 d(Tx, x) + c_2 d(Tx, x)\}$$
$$\le \max\{(c_1 + c_2) d(Tx, x)\}$$
$$= (c_1 + c_2) d(Tx, x) \qquad (\text{since } c_1 + c_2 < 1).$$

Hence d(Tx, x) = 0, so Tx = x. Thus x is a fixed point of T. Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose that  $u \neq v$ . Then  $d(u, v) = d(Tu, Tv) < \max\{d(u, v), d(Tv, u), c_1d(Tu, v) + c_2d(Tu, u)\}$   $\leq \max\{d(u, v), d(v, u), c_1d(u, v) + c_2d(u, u)\}$   $\leq \max\{d(u, v), c_1d(u, v)\}$ = d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique.

**Corollary 3.1.3** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi: X \to \mathbb{R}^+$  such that

- (1)  $d(x, Tx) \leq \Phi(x) \Phi(Tx), \forall x \in X.$
- (2)  $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Tx,y), c_2d(Tx,x)\}, \forall x \neq y \in X,$

where  $c_1 > 0, c_2 > 0$  and  $c_1 + c_2 < 1$  Then T has a unique fixed point.

**Proof.** Since the condition (2) of Corollary 3.1.3 implies (2) of Theorem 3.1.2, the corollary is directly obtained by Theorem 3.1.2.

**Theorem 3.1.4** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi: X \to \mathbb{R}^+$  such that (1)  $d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$ (2)  $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Ty,y) + c_2d(Tx,y)\}, \forall x \neq y \in X,$ 

where  $c_1 > 0$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Let  $x_0 \in X$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X. Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a

fixed point of T.

**CaseI.** There exists  $m \in N$  such that  $x_n = x$  for all n > m. Then

 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx)$ . Hence Tx = x.

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have © by Chiang Mai University

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x), c_1d(Tx_{n_k}, x_{n_k}) + c_2d(Tx, x_{n_k})\}.$$

By taking  $k \to \infty$ , we have

**Wright** 

$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1 d(x, x) + c_2 d(Tx, x)\}\$$
  
=  $c_2 d(Tx, x).$ 

Since  $0 < c_2 < 1$ , it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose that  $u \neq v$ . Then

$$d(u,v) = d(Tu,Tv) < \max\{d(u,v), d(Tv,u), c_1d(Tv,v) + c_2d(Tu,v)\}$$
  
$$\leq \max\{d(u,v), d(v,u), c_1d(v,v) + c_2d(u,v)\}$$
  
$$\leq \max\{d(u,v), c_2d(u,v)\}$$
  
$$= d(u,v),$$

which is a contradiction, so u = v. Therefore fixed point of T is unique.

**Corollary 3.1.5** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

(1) 
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$
  
(2)  $d(Tx, Ty) < \max\{d(x, y), d(Ty, x), c_1 d(Ty, y), c_2 d(Tx, y)\}, \forall x \neq y \in X,$ 

where  $c_1 < 0$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Since the condition (2) of Corollary 3.1.5 implies (2) of Theorem 3.1.4, the corollary is directly obtained by Theorem 3.1.4.

**Theorem 3.1.6** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

(1)  $d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$ 

(2)  $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Ty,y) + c_2d(Tx,x)\}, \forall x \neq y \in X,$ where  $c_1 > 0$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Let  $x_0 \in X$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X.

Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a fixed point of T.

12

**CaseI.** There exists  $m \in N$  such that  $x_n = x$  for all n > m. Then

 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx).$  Hence Tx = x.

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have 0161012

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x), c_1d(Tx_{n_k}, x_{n_k}) + c_2d(Tx, x)\}.$$

By taking  $k \to \infty$ , we have

$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1 d(x, x) + c_2 d(Tx, x)\}\$$
  
=  $c_2 d(Tx, x),$ 

Since  $0 < c_2 < 1$ , it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose that  $u \neq v$ . Then

$$d(u,v) = d(Tu,Tv) < \max\{d(u,v), d(Tv,u), c_1d(Tv,v) + c_2d(Tu,u)\}$$
  
$$\leq \max\{d(u,v), d(v,u), c_1d(v,v) + c_2d(u,u)\}$$
  
$$= d(u,v),$$

which is a contradiction, so u = v. Therefore fixed point of T is unique. **Corollary 3.1.7** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi: X \to \mathbb{R}^+$  such that

(1)  $d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in$ 

(2)  $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Ty,y), c_2d(Tx,x)\}, \forall x \neq y \in$ 

where  $0 < c_1 < 1$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Since the condition (2) of Corollary 3.1.7 implies (2) of Theorem 3.1.6, the corollary is directly obtained by Theorem 3.1.6.

**Theorem 3.1.8** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi: X \to \mathbb{R}^+$  such that

(1) 
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X$$

(2) 
$$d(Tx,Ty) < \max\{d(x,y), d(Ty,y), c_1d(Ty,x) + c_2d(Tx,y)\}, \forall x \neq y \in X,$$

where  $c_1 > 0, c_2 > 0$  and  $c_1 + c_2 = 1$  Then T has a unique fixed point.

**Proof.** Let  $x_0 \in X$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X.

Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a fixed point of T.

**CaseI.** There exists  $m \in N$  such that  $x_n = x$  for all n > m. Then

 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx).$  Hence Tx = x.

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x_{n_k}), c_1d(Tx_{n_k}, x) + c_2d(Tx, x_{n_k})\}.$$

By taking  $k \to \infty$ , we have

$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1 d(x, x) + c_2 d(Tx, x)\}\$$
  
=  $c_2 d(Tx, x).$ 

Since  $0 < c_2 < 1$ , it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose that  $u \neq v$ . Then

$$d(u,v) = d(Tu,Tv) < \max\{d(u,v), d(Tv,v), c_1d(Tv,u) + c_2d(Tu,v)\}$$
  
$$\leq \max\{d(u,v), d(v,v), c_1d(v,u) + c_2d(u,v)\}$$
  
$$\leq \max\{d(u,v), (c_1 + c_2)d(u,v)\}$$
  
$$= d(u,v) \quad (since c_1 + c_2 = 1),$$

which is a contradiction, so u = v. Therefore fixed point of T is unique.

**Theorem 3.1.9** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

(1) 
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X$$

(2) 
$$d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1d(Ty, x), c_2d(Tx, y)\}, \forall x \neq y \in X, d(Tx, y)\}$$

where  $0 < c_1 < 1$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Let  $x_0 \in X$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X.

Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a fixed point of T.

**CaseI.** There exists  $m \in N$  such that  $x_n = x$  for all n > m. Then

 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx).$  Hence Tx = x.

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x_{n_k}), c_1d(Tx_{n_k}, x), c_2d(Tx, x_{n_k})\}.$$

By taking  $k \to \infty$ , we have

$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1 d(x, x), c_2 d(Tx, x)\}\$$
  
=  $c_2 d(Tx, x).$ 

Since  $0 < c_2 < 1$ , it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose that  $u \neq v$ . Then

$$d(u,v) = d(Tu,Tv) < \max\{d(u,v), d(Tv,v), c_1d(Tv,u), c_2d(Tu,v)\}$$

$$\leq \max\{d(u,v), d(v,v), c_1d(v,u), c_2d(u,v)\}$$

$$\leq \max\{d(u,v), c_1d(u,v), c_2d(u,v)\}$$

$$= d(u,v) \quad (since \ 0 < c_1, c_2 < 1),$$

which is a contradiction, so u = v. Therefore fixed point of T is unique.

**Theorem 3.1.10** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

(1) 
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X$$

(2) 
$$d(Tx,Ty) < \max\{d(x,y), d(Ty,y), c_1d(Ty,x) + c_2d(Tx,x)\}, \forall x \neq y \in X,$$

where  $0 < c_1 < 1$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Let  $x_0 \in X$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X.

Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a fixed point of T.

**CaseI.** There exists  $m \in N$  such that  $x_n = x$  for all n > m. Then

 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx).$  Hence Tx = x.

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x_{n_k}), c_1d(Tx_{n_k}, x) + c_2d(Tx, x)\}.$$

By taking  $k \to \infty$ , we have

$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1 d(x, x) + c_2 d(Tx, x)\}\$$
  
=  $c_2 d(Tx, x).$ 

Since  $0 < c_2 < 1$ , it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose that  $u \neq v$ . Then

 $d(u, v) = d(Tu, Tv) < \max\{d(u, v), d(Tv, v), c_1d(Tv, u) + c_2d(Tu, u)\}$   $\leq \max\{d(u, v), d(v, v), c_1d(u, v) + c_2d(u, u)\}$   $\leq \max\{d(u, v), c_1d(u, v)\}$  = d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique.

**Corollary 3.1.11** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

- (1)  $d(x, Tx) \le \Phi(x) \Phi(Tx), \forall x \in X,$
- (2)  $d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1d(Ty, x), c_2d(Tx, x)\}, \forall x \neq y \in X,$

where  $0 < c_1 < 1$  and  $0 < c_2 < 1$  Then T has a unique fixed point.

**Proof.** Since the condition (2) of Corollary 3.1.11 implies (2) of Theorem 3.1.10, the corollary is directly obtained by Theorem 3.1.10.

**Theorem 3.1.12** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

(1) d(x,Tx) ≤ Φ(x) - Φ(Tx), ∀x ∈ X,
(2) d(Tx,Ty) < max{d(x,y), d(Ty,y), c₁d(Tx,y) + c₂d(Tx,x)}, ∀x ≠ y ∈ X,</li>
where c₁ > 0, c₂ > 0 and c₁ + c₂ < 1 Then T has a unique fixed point.</li>

**Proof.** Let  $x_0 \in X$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . By Lemma 3.1.1,  $(x_n)$  is Cauchy in X. Since X is complete, we have that  $(x_n)$  is convergent in X.

Hence there exists  $x \in X$  such that  $\lim_{n\to\infty} x_n = x$ . Now, we show that x is a fixed point of T.

**CaseI.** There exists  $m \in N$  such that  $x_n = x$  for all n > m. Then

 $0 = \lim_{n \to \infty} d(Tx_n, Tx) = \lim_{n \to \infty} d(x_{n+1}, Tx) = d(x, Tx).$  Hence Tx = x.

**CaseII.** There exists a subsequence  $(x_{n_k})$  such that  $x_{n_k} \neq x, \forall k \in N$ . By(2), we have

$$d(Tx, Tx_{n_k}) < \max\{d(x, x_{n_k}), d(Tx_{n_k}, x_{n_k}), c_1d(Tx, x_{n_k}) + c_2d(Tx, x)\}.$$
By taking  $k \to \infty$ , we have
$$d(Tx, x) \le \max\{d(x, x), d(x, x), c_1d(Tx, x) + c_2d(Tx, x)\}$$

$$= (c_1 + c_2)d(Tx, x),$$

so d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v.

Suppose that  $u \neq v$ . Then

$$d(u, v) = d(Tu, Tv) < \max\{d(u, v), d(Tv, v), c_1d(Tu, v) + c_2d(Tu, u)\}$$
  
$$\leq \max\{d(u, v), d(v, v), c_1d(u, v) + c_2d(u, u)\}$$
  
$$\leq \max\{d(u, v), c_1d(u, v)\}$$
  
$$= d(u, v),$$

which is a contradiction, so u = v. Therefore fixed point of T is unique.

**Corollary 3.1.13** Let (X, d) be a complete metric space and let  $T : X \to X$ . Suppose that there exists a mapping  $\Phi : X \to \mathbb{R}^+$  such that

(1) 
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$
  
(2)  $d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1 d(Tx, y), c_2 d(Tx, x)\}, \forall x \neq y \in X.$ 

where  $c_1 > 0, c_2 > 0$  and  $c_1 + c_2 < 1$  Then T has a unique fixed point.

**Proof.** Since the condition (2) of Corollary 3.1.13 implies (2) of Theorem 3.1.12, the corollary is directly obtained by Theorem 3.1.12.

# 3.2 Common Fixed Point of Selfmappings in Metric Spaces

**Theorem 3.2.1** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{c_1[d(Sx, Sy) + d(Tx, Sy)], c_2[d(Tx, Sx) + d(Ty, Sy)]\},\ \forall x \neq y \in X, where \ 0 \le c_1 \le 1/2 \ and \ 0 \le c_2 \le 1/2$

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Proof.** Since T and S satisfy the property (E.A), there exists a sequence  $(x_n)$  in X such that  $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$  for some  $t \in X$ . Suppose SX is complete. Then  $\lim_{n\to\infty} Sx_n = Sa$  for some  $a \in X$ , so  $\lim_{n\to\infty} Tx_n = Sa$ . We show that Ta = Sa. If there exists  $n_0 \in \mathbb{N}$  such that  $x_n = a \ \forall n \ge n_0$ , we obtain that Ta = Sa. If there is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $x_{n_k} \neq a \ \forall k \in \mathbb{N}$ . By (2), we have  $d(Tx_{n_k}, Ta) < \max\{c_1[d(Sx_{n_k}, Sa) + d(Tx_{n_k}, Sa)], c_2[d(Tx_{n_k}, Sx_{n_k}) + d(Ta, Sa)]\}.$ Take  $k \to \infty$ , we have  $d(Sa, Ta) \le \max\{c_1[d(Sa, Sa) + d(Sa, Sa)], c_2[d(Sa, Sa) + d(Ta, Sa)]\}$  $= c_2 d(Ta, Sa).$ Since  $0 < c_2 < 1$ , it implies that d(Ta, Sa) = 0, hence Ta = Sa. Since T and S are weakly compatible, TSa = STa and TTa = TSa =STa = SSa.If  $Ta \neq a$ , by(2), we have  $d(Ta, TTa) < \max\{c_1[d(Sa, STa) + d(Ta, STa)], c_2[d(Ta, Sa) + d(TTa, STa)]\}$  $\leq \max\{c_1[d(Ta,TTa) + d(Ta,TTa)], c_2[d(Ta,Ta) + d(TTa,TTa)]\}$  $= 2c_1 d(Ta, TTa)$ < d(Ta, TTa).

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common fixed point of S and T. The proof is similar when TX is assumed to be a complete subspace of X since  $TX \subset SX$ .

Finally, we show common fixed point is unique. Let Tv = Sv = v and Tu = Su = u. Suppose  $u \neq v$ . By(2), we have  $d(u, v) = d(Tu, Tv) < \max\{c_1[d(Su, Sv) + d(Tu, Sv)], c_2[d(Tu, Su) + d(Tv, Sv)]\}$   $\leq \max\{c_1[d(Tu, Tv) + d(Tu, Tv)], c_2[d(Tu, Tu) + d(Tv, Tv)]\}$   $= 2c_1d(Tu, Tv)$  $\leq d(Tu, Tv) = d(u, v),$ (3.1) which is a contradiction, hence u = v. Therefore T and S have a unique common fixed point.

Taking  $c_1 = c_2$  in Theorem 3.2.1, we get the following result:

**Corollary 3.2.2** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
  (2) d(Tx, Ty) < c ⋅ max{[d(Sx, Sy) + d(Tx, Sy)], [d(Tx, Sx) + d(Ty, Sy)]}, ∀x ≠ y ∈ X, where 0 ≤ c ≤ 1/2.
- (3)  $TX \subset SX$ . If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_2 = 0$  in Theorem 3.2.1, we have the following result:

**Corollary 3.2.3** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx,Ty) < c \cdot (d(Sx,Sy) + d(Tx,Sy)), \forall x \neq y \in X, where 0 \le c \le 1/2.$

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_1 = 0$  in Theorem 3.2.1, we have the following result:

**Corollary 3.2.4** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) 
$$d(Tx,Ty) < c \cdot (d(Tx,Sx) + d(Ty,Sy)), \forall x \neq y \in X, where 0 \le c \le 1/2.$$

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Theorem 3.2.5** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),
(2) d(Tx,Ty) < max{d(Sx,Sy), c<sub>1</sub>d(Tx,Sy) + c<sub>2</sub>d(Ty,Sx), d(Tx,Sx)}, ∀x ≠ y ∈ X, where c<sub>1</sub> ≥ 0 , c<sub>2</sub> ≥ 0 and c<sub>1</sub> + c<sub>2</sub> < 1.</li>
(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Proof.** Since T and S satisfy the property(E.A), there exists a sequence  $(x_n)$  in X such that  $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$  for some  $t \in X$ . Suppose SX is complete. Then  $\lim_{n\to\infty} Sx_n = Sa$  for some  $a \in X$ , so  $\lim_{n\to\infty} Tx_n = Sa$ . We show that Ta = Sa.

If there exists  $n_0 \in \mathbb{N}$  such that  $x_n = a \ \forall n \ge n_0$ , we obtain that Ta = Sa.

If there is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $x_{n_k} \neq a \ \forall k \in \mathbb{N}$ . By (2), we have

$$d(Tx_{n_k}, Ta) < \max\{d(Sx_{n_k}, Sa), c_1d(Tx_{n_k}, Sa) + c_2d(Ta, Sx_{n_k}), d(Tx_{n_k}, Sx_{n_k})\}.$$

Take 
$$k \to \infty$$
, we have  
 $d(Sa, Ta) \le \max\{d(Sa, Sa), c_1d(Sa, Sa) + c_2d(Ta, Sa), d(Sa, Sa)\}$ 

Since  $c_2 < 1$ , it implies that d(Ta, Sa) = 0, hence Ta = Sa. Since T and S are weakly compatible, TSa = STa and TTa = TSa = STa = SSa.

If  $Ta \neq a$ , by(2), we have

$$\begin{aligned} d(Ta, TTa) &< \max\{d(Sa, STa), c_1 d(Ta, STa) + c_2 d(TTa, Sa), d(Ta, Sa)\} \\ &\leq \max\{d(Ta, TTa), c_1 d(Ta, TTa) + c_2 d(TTa, Ta), d(Ta, Ta)\} \\ &\leq \max\{d(Ta, TTa), (c_1 + c_2) d(TTa, Ta)\} \\ &= d(Ta, TTa) \qquad (\text{since } c_1 + c_2 < 1), \end{aligned}$$

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common fixed point of S and T. The proof is similar when TX is assumed to be a complete subspace of X since  $TX \subset SX$ .

Finally, we show common fixed point is unique. Let 
$$Tv = Sv = v$$
 and  
 $Tu = Su = u$ . Suppose  $u \neq v$ . By(2), we have  
 $d(u, v) = d(Tu, Tv) < \max\{d(Su, Sv), c_1d(Tu, Sv) + c_2d(Tv, Su), d(Tu, Su)\}$   
 $\leq \max\{d(Tu, Tv), c_1d(Tu, Tv) + c_2d(Tv, Tu), d(Tu, Tu)\}$   
 $\leq \max\{d(Tu, Tv), (c_1 + c_2)d(Tv, Tu)\}$   
 $= d(Tu, Tv), \quad (\text{since } c_1 + c_2 < 1),$ 

which is a contradiction, hence u = v. Therefore T and S have a unique common fixed point.

Taking  $c_1 = c_2$  in Theorem 3.2.5, we get the following result:

**Corollary 3.2.6** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),
(2) d(Tx,Ty) < max{d(Sx,Sy), c[d(Tx,Sy) + d(Ty,Sx)], d(Tx,Sx)},</li>
∀x ≠ y ∈ X, where 0 ≤ c < 1/2.</li>

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_2 = 0$  in Theorem 3.2.5, we have the following result:

**Corollary 3.2.7** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Tx, Sy), d(Tx, Sx)\},\$  $\forall x \neq y \in X, where \ 0 \le c < 1.$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_1 = 0$  in Theorem 3.2.5, we have the following result:

**Corollary 3.2.8** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Ty, Sx), d(Tx, Sx)\},\$  $\forall x \neq y \in X, where \ 0 \le c < 1.$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Theorem 3.2.9** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Tx, Sy) + c_2d(Ty, Sy), d(Tx, Sx)\},\ \forall x \neq y \in X, where \ 0 \le c_1 < 1 \ and \ 0 \le c_2 < 1.$

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Proof.** Since T and S satisfy the property(E.A), there exists a sequence  $(x_n)$  in X such that  $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$  for some  $t \in X$ . Suppose SX is complete. Then  $\lim_{n\to\infty} Sx_n = Sa$  for some  $a \in X$ , so  $\lim_{n\to\infty} Tx_n = Sa$ . We show that Ta = Sa. If there exists  $n_0 \in \mathbb{N}$  such that  $x_n = a \ \forall n \ge n_0$ , we obtain that Ta = Sa. If there is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $x_{n_k} \ne a \ \forall k \in \mathbb{N}$ . By (2), we have  $d(Tx_n, Ta) \le \max\{d(Sx_n, Sa), c_nd(Tx_n, Sa) \pm c_nd(Ta, Sa), d(Tx_n, Sx_n)\}$ 

 $d(Tx_{n_k}, Ta) < \max\{d(Sx_{n_k}, Sa), c_1d(Tx_{n_k}, Sa) + c_2d(Ta, Sa), d(Tx_{n_k}, Sx_{n_k})\}.$ Take  $k \to \infty$ , we have

$$d(Sa, Ta) \le \max\{d(Sa, Sa), c_1d(Sa, Sa) + c_2d(Ta, Sa), d(Sa, Sa)\}$$
$$= c_2d(Ta, Sa).$$

Since  $c_2 < 1$ , it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa = STa = SSa. If  $Ta \neq a$ , by(2), we have

 $d(Ta, TTa) < \max\{d(Sa, STa), c_1d(Ta, STa) + c_2d(TTa, STa), d(Ta, Sa)\}$   $\leq \max\{d(Ta, TTa), c_1d(Ta, TTa) + c_2d(TTa, TTa), d(Ta, Ta)\}$   $\leq \max\{d(Ta, TTa), c_1d(TTa, Ta)\}$   $= d(Ta, TTa) \quad (\text{since } c_1 < 1),$ 

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common fixed point of S and T. The proof is similar when TX is assumed to be a complete subspace of X since  $TX \subset SX$ .

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose  $u \neq v$ . By(2), we have

$$\begin{aligned} d(u,v) &= d(Tu,Tv) < \max\{d(Su,Sv), c_1d(Tu,Sv) + c_2d(Tv,Sv), d(Tu,Su)\} \\ &\leq \max\{d(Tu,Tv), c_1d(Tu,Tv) + c_2d(Tv,Tv), d(Tu,Tu)\} \\ &\leq \max\{d(Tu,Tv), c_1d(Tv,Tu)\} \\ &= d(Tu,Tv), \quad (\text{since } c_1 < 1), \end{aligned}$$

which is a contradiction, hence u = v. Therefore T and S have a unique common fixed point.

Taking  $c_1 = c_2$  in Theorem 3.2.9, we get the following result:

**Corollary 3.2.10** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property (E.A),
- $\begin{array}{ll} (2) \ \ d(Tx,Ty) < \max\{d(Sx,Sy),c[d(Tx,Sy)+d(Ty,Sy)],d(Tx,Sx)\}\\ \\ \forall x \neq y \in X, \ where \ 0 \leq c < 1. \end{array}$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_1 = 0$  in Theorem 3.2.9, we have the following result:

**Corollary 3.2.11** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Ty, Sy), d(Tx, Sx)\},\ \forall x \neq y \in X, where \ 0 \le c < 1.$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Theorem 3.2.12** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Ty, Sx) + c_2d(Ty, Sy), d(Tx, Sx)\},\$  $\forall x \neq y \in X, where c_1 \ge 0, c_2 \ge 0 and c_1 + c_2 < 1.$

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Proof.** Since T and S satisfy the property(E.A), there exists a sequence  $(x_n)$  in X such that  $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$  for some  $t \in X$ . Suppose SX is complete. Then  $\lim_{n\to\infty} Sx_n = Sa$  for some  $a \in X$ , so  $\lim_{n\to\infty} Tx_n = Sa$ . We show that Ta = Sa.

If there exists  $n_0 \in \mathbb{N}$  such that  $x_n = a \ \forall n \ge n_0$ , we obtain that Ta = Sa.

If there is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $x_{n_k} \neq a \ \forall k \in \mathbb{N}$ . By (2), we have

 $d(Tx_{n_k}, Ta) < \max\{d(Sx_{n_k}, Sa), c_1d(Ta, Sx_{n_k}) + c_2d(Ta, Sa), d(Tx_{n_k}, Sx_{n_k})\}.$ 

Take  $k \to \infty$ , we have

 $d(Sa, Ta) \le \max\{d(Sa, Sa), c_1d(Ta, Sa) + c_2d(Ta, Sa), d(Sa, Sa)\}$ =  $(c_1 + c_2)d(Ta, Sa).$ 

Since  $c_1 + c_2 < 1$ , it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa = STa = SSa.

If  $Ta \neq a$ , by(2), we have

$$d(Ta, TTa) < \max\{d(Sa, STa), c_1d(TTa, Sa) + c_2d(TTa, STa), d(Ta, Sa)\}$$
  
$$\leq \max\{d(Ta, TTa), c_1d(TTa, Ta) + c_2d(TTa, TTa), d(Ta, Ta)\}$$
  
$$\leq \max\{d(Ta, TTa), c_1d(TTa, Ta)\}$$
  
$$= d(Ta, TTa),$$

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common fixed point of S and T. The proof is similar when TX is assumed to be a complete subspace of X since  $TX \subset SX$ .

Finally, we show common fixed point is unique. Let Tv = Sv = v and Tu = Su = u. Suppose  $u \neq v$ . By(2), we have  $d(u, v) = d(Tu, Tv) < \max\{d(Su, Sv), c_1d(Tv, Su) + c_2d(Tv, Sv), d(Tu, Su)\}$   $\leq \max\{d(Tu, Tv), c_1d(Tv, Tu) + c_2d(Tv, Tv), d(Tu, Tu)\}$   $\leq \max\{d(Tu, Tv), c_1d(Tv, Tu)\}$ = d(Tu, Tv),

which is a contradiction, hence u = v. Therefore T and S have a unique common fixed point.

Taking  $c_1 = c_2$  in Theorem 3.2.12, we get the following result:

**Corollary 3.2.13** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),

(2)  $d(Tx, Ty) < \max\{d(Sx, Sy), c[d(Ty, Sx) + d(Ty, Sy)], d(Tx, Sx)\},\ \forall x \neq y \in X, where \ 0 \le c < 1/2.$ 

(3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Theorem 3.2.14** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Tx, Sx) + c_2d(Ty, Sx), d(Tx, Sy)\},\$  $\forall x \neq y \in X, where c_1 \ge 0, 0 \le c_2 < 1.$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Proof.** Since T and S satisfy the property(E.A), there exists a sequence  $(x_n)$  in X such that  $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$  for some  $t \in X$ . Suppose SX is complete. Then  $\lim_{n\to\infty} Sx_n = Sa$  for some  $a \in X$ , so  $\lim_{n\to\infty} Tx_n = Sa$ . We show that Ta = Sa.

If there exists  $n_0 \in \mathbb{N}$  such that  $x_n = a \ \forall n \ge n_0$ , we obtain that Ta = Sa.

If there is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $x_{n_k} \neq a \ \forall k \in \mathbb{N}$ . By (2), we have

$$d(Tx_{n_k}, Ta) < \max\{d(Sx_{n_k}, Sa), c_1d(Tx_{n_k}, Sx_{n_k}) + c_2d(Ta, Sx_{n_k}), d(Tx_{n_k}, Sa)\}.$$

Take  $k \to \infty$ , we have

 $d(Sa, Ta) \le \max\{d(Sa, Sa), c_1d(Sa, Sa) + c_2d(Ta, Sa), d(Sa, Sa)\}\$ =  $c_2d(Ta, Sa).$ 

Since  $c_2 < 1$ , it implies that d(Ta, Sa) = 0, hence Ta = Sa. Since T and S are weakly compatible, TSa = STa and TTa = TSa.

STa = SSa.If  $Ta \neq a$ , by(2), we have  $d(Ta, TTa) < \max\{d(Sa, STa), c_1d(Ta, Sa) + c_2d(TTa, Sa), d(Ta, STa)\}$   $\leq \max\{d(Ta, TTa), c_1d(Ta, Ta) + c_2d(TTa, Ta), d(Ta, TTa)\}$   $\leq \max\{d(Ta, TTa), c_2d(TTa, Ta)\}$  = d(Ta, TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common fixed point of S and T. The proof is similar when TX is assumed to be a complete subspace of X since  $TX \subset SX$ .

Finally, we show common fixed point is unique. Let Tv = Sv = v and Tu = Su = u. Suppose  $u \neq v$ . By(2), we have

$$\begin{aligned} d(u,v) &= d(Tu,Tv) < \max\{d(Su,Sv), c_1d(Tu,Su) + c_2d(Tv,Su), d(Tu,Sv)\} \\ &\leq \max\{d(Tu,Tv), c_1d(Tu,Tu) + c_2d(Tv,Tu), d(Tu,Tv)\} \\ &\leq \max\{d(Tu,Tv), c_2d(Tu,Tv)\} \\ &= d(Tu,Tv), \end{aligned}$$

which is a contradiction, hence u = v. Therefore T and S have a unique common fixed point.

Taking  $c_1 = c_2$  in Theorem 3.2.14, we get the following result:

**Corollary 3.2.15** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), c[d(Tx, Sx) + d(Ty, Sx)], d(Tx, Sy)\}, \forall x \neq y \in X, where 0 \le c < 1.$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_1 = 0$  in Theorem 3.2.14, we have the following result:

**Corollary 3.2.16** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),

- 29
- (2)  $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Ty, Sx), d(Tx, Sy)\},\$  $\forall x \neq y \in X, where \ 0 \le c < 1.$
- (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_2 = 0$  in Theorem 3.2.14, we have the following result:

**Corollary 3.2.17** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) *T* and *S* satisfy the property(*E*.*A*),
  (2) *d*(*Tx*, *Ty*) < max{*d*(*Sx*, *Sy*), *cd*(*Tx*, *Sx*), *d*(*Tx*, *Sy*)}, ∀*x* ≠ *y* ∈ *X*, where 0 ≤ *c* < 1.</li>
  - (3)  $TX \subset SX$ .

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Theorem 3.2.18** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A), (2)  $d(Tx,Ty) < \max\{d(Sx,Sy), c_1d(Ty,Sx) + c_2d(Ty,Sy), d(Tx,Sy)\},$   $\forall x \neq y \in X, where c_1 \ge 0, c_2 \ge 0 and c_1 + c_2 < 1.$ (3)  $TX \subset SX.$ 

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

**Proof.** Since T and S satisfy the property (E.A), there exists a sequence  $(x_n)$  in X such that  $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$  for some  $t \in X$ . Suppose SX is complete. Then  $\lim_{n\to\infty} Sx_n = Sa$  for some  $a \in X$ , so  $\lim_{n\to\infty} Tx_n = Sa$ . We show that Ta = Sa. If there exists  $n_0 \in \mathbb{N}$  such that  $x_n = a \ \forall n \ge n_0$ , we obtain that Ta = Sa. If there is a subsequence  $(x_{n_k})$  of  $(x_n)$  such that  $x_{n_k} \neq a \ \forall k \in \mathbb{N}$ . By (2), we have  $d(Tx_{n_k}, Ta) < \max\{d(Sx_{n_k}, Sa), c_1d(Ta, Sx_{n_k}) + c_2d(Ta, Sa), d(Tx_{n_k}, Sa)\}.$ Take  $k \to \infty$ , we have  $d(Sa,Ta) \le \max\{d(Sa,Sa), c_1d(Ta,Sa) + c_2d(Ta,Sa), d(Sa,Sa)\}$  $= (c_1 + c_2)d(Ta, Sa).$ Since  $c_1 + c_2 < 1$ , it implies that d(Ta, Sa) = 0, hence Ta = Sa. Since T and S are weakly compatible, TSa = STa and TTa = TSa =STa = SSa.If  $Ta \neq a$ , by(2), we have  $d(Ta, TTa) < \max\{d(Sa, STa), c_1d(TTa, Sa) + c_2d(TTa, STa), d(Ta, STa)\}$  $\leq \max\{d(Ta, TTa), c_1d(TTa, Ta) + c_2d(TTa, TTa), d(Ta, TTa)\}$  $\leq \max\{d(Ta, TTa), c_1d(Ta, TTa)\}$ = d(Ta, TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common fixed point of S and T. The proof is similar when TX is assumed to be a complete subspace of X since  $TX \subset SX$ .

Finally, we show common fixed point is unique. Let Tv = Sv = v and Tu = Su = u. Suppose  $u \neq v$ . By(2), we have  $d(u, v) = d(Tu, Tv) < \max\{d(Su, Sv), c_1d(Tv, Su) + c_2d(Tv, Sv), d(Tu, Sv)\}$   $\leq \max\{d(Tu, Tv), c_1d(Tv, Tu) + c_2d(Tv, Tv), d(Tu, Tv)\}$   $\leq \max\{d(Tu, Tv), c_1d(Tu, Tv)\}$ = d(Tu, Tv), which is a contradiction, hence u = v. Therefore T and S have a unique common fixed point.

Taking  $c_1 = c_2$  in Theorem 3.2.18, we get the following result:

**Corollary 3.2.19** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),
(2) d(Tx,Ty) < max{d(Sx,Sy), c[d(Ty,Sx) + d(Ty,Sy)], d(Tx,Sy)},</li>
∀x ≠ y ∈ X, where 0 ≤ c < 1/2.</li>

(3)  $TX \subset SX$ . If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

Taking  $c_1 = 0$  in Theorem 3.2.18, we have the following result:

**Corollary 3.2.20** Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2)  $d(Tx,Ty) < \max\{d(Sx,Sy), cd(Ty,Sy), d(Tx,Sy)\},\$  $\forall x \neq y \in X, where \ 0 \le c < 1.$
- $(3) TX \subset SX$

If SX or TX is a complete subspace of X, then T and S have a unique common fixed point.

**Theorem 3.2.21** Let (X, d) be a complete metric space and let  $S, T : X \to X$  are commuting mappings satisfying the inequality

$$d(Sx, Sy) \le F(\max\{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy) + d(Ty, Sx)\}), \forall x, y \in X$$
(3.2)

where  $F : \mathbb{R}^+ \to \mathbb{R}^+$  is a nondecreasing continuous function such that F(t) < tfor each t > 0. If  $SX \subset TX$  and T is continuous then S and T have a unique common fixed point.

**proof.** Let  $x_0 \in X$ , chose  $x_1 \in X$  such that  $Sx_0 = Tx_1$ . This can be done since  $SX \subset TX$ . In general, having chosen  $x_n$  choose  $x_{n+1}$  such that  $Sx_n = Tx_{n+1}$ . We shall show that

$$d(Sx_n, Sx_{n+1}) \le F(d(Sx_{n-1}, Sx_n)).$$
(3.3)

$$l(Sx_n, Sx_{n+1}) \le d(Sx_{n-1}, Sx_n).$$
(3.4)

By (3.2), we have

$$d(Sx_n, Sx_{n+1}) \le F(\max\{d(Tx_n, Tx_{n+1}), d(Tx_n, Sx_n), d(Tx_{n+1}, Sx_{n+1}) + d(Tx_{n+1}, Sx_n)\})$$
  
$$\le F(\max\{d(Sx_{n-1}, Sx_n), d(Sx_{n-1}, Sx_n), d(Sx_n, Sx_{n+1}) + d(Sx_n, Sx_n)\})$$
  
$$\le F(\max\{d(Sx_{n-1}, Sx_n), d(Sx_n, Sx_{n+1})\}).$$

If  $0 \le d(Sx_{n-1}, Sx_n) < d(Sx_n, Sx_{n+1})$ , then  $d(Sx_n, Sx_{n+1}) \le F(d(Sx_n, Sx_{n+1}))$  $< d(Sx_n, Sx_{n+1})$  which is a contradiction. Hence  $d(Sx_{n-1}, Sx_n) \ge d(Sx_n, Sx_{n+1})$ and  $d(Sx_n, Sx_{n+1}) \le F(d(Sx_{n-1}, Sx_n))$ . Thus (3.3) and (3.4) are satisfied. Thus the sequence  $(d(Sx_n, Sx_{n+1}))_{n=0}^{\infty}$  is a nonincreasing sequence of positive real number and therefore has a limit  $L \ge 0$ . We claim that L = 0. Suppose L > 0, by taking  $n \to \infty$  in(3.3) and continuity of F, we have

$$L = \lim_{n \to \infty} d(Sx_n, Sx_{n+1}) \le \lim_{n \to \infty} F(d(Sx_{n-1}, Sx_n)) = F(L) < L,$$

which is a contradiction, hence L = 0. Thus  $\lim_{n\to\infty} d(Sx_n, Sx_{n+1}) = 0$ Next, we show that  $(Sx_n)_{n=0}^{\infty}$  is a Cauchy sequence in X.To show this, suppose not.Then there exist  $\epsilon > 0$  and strictly increasing sequences of positive integer  $(m_k)$  and  $(n_k)$  with  $m_k > n_k \ge k$  such that

$$d(Sx_{m_k}, Sx_{n_k}) \ge \epsilon. \tag{3.5}$$

Assume that for each k,  $m_k$  is the smallest number greater than  $n_k$  for which (3.5) holds. By (3.4) and (3.5)

$$\epsilon \leq d(Sx_{m_k}, Sx_{n_k}) \leq d(Sx_{m_k}, Sx_{m_{k-1}}) + d(Sx_{m_{k-1}}, Sx_{n_k})$$
$$\leq d(Sx_{m_k}, Sx_{m_{k-1}}) + \epsilon$$
$$\leq d(Sx_k, Sx_{k-1}) + \epsilon.$$
es  $\lim_{n \to \infty} d(Sx_{m_k}, Sx_{n_k}) = \epsilon.$ e inequality and (3.4), we have

This implies  $\lim_{n\to\infty} d(Sx_{m_k}, Sx_{n_k}) = \epsilon$ . By triangle inequality and (3.4), we have

$$d(Sx_{m_k}, Sx_{n_k}) \le d(Sx_{m_k}, Sx_{m_{k+1}}) + d(Sx_{m_k+1}, Sx_{n_k+1}) + d(Sx_{n_k+1}, Sx_{n_k})$$
  
$$\le d(Sx_{m_k}, Sx_{m_{k-1}}) + d(Sx_{m_k+1}, Sx_{n_k+1}) + d(Sx_{n_k-1}, Sx_{n_k})$$
  
$$\le 2d(Sx_k, Sx_{k-1}) + d(Sx_{m_k+1}, Sx_{n_k+1}).$$
(3.6)

By (3.2) and (3.4) we have

$$d(Sx_{m_{k}+1}, Sx_{n_{k}+1}) \leq F(\max\{d(Tx_{m_{k}+1}, Tx_{n_{k}+1}), d(Tx_{m_{k}+1}, Sx_{m_{k}+1}), d(Tx_{n_{k}+1}, Sx_{n_{k}+1}) + d(Tx_{n_{k}+1}, Sx_{m_{k}+1})\})$$

$$\leq F(\max\{d(Sx_{m_{k}}, Sx_{n_{k}}), d(Sx_{m_{k}}, Sx_{m_{k}+1}), d(Sx_{n_{k}}, Sx_{n_{k}+1}) + d(Sx_{n_{k}}, Sx_{m_{k}+1})\})$$

$$\leq F(\max\{d(Sx_{m_{k}}, Sx_{n_{k}}), d(Sx_{n_{k}}, Sx_{n_{k}+1}) + d(Sx_{n_{k}}, Sx_{m_{k}+1})\}).$$

Since  $d(Sx_{n_k}, Sx_{m_k+1}) \le d(Sx_{m_k+1}, Sx_{m_k}) + d(Sx_{m_k}, Sx_{n_k})$ , so by (3.2) and (3.4) we have

$$d(Sx_{m_{k}+1}, Sx_{n_{k}+1}) \leq F(\max\{d(Sx_{m_{k}}, Sx_{n_{k}}), d(Sx_{n_{k}}, Sx_{n_{k}+1}) + d(Sx_{m_{k}+1}, Sx_{m_{k}}) + d(Sx_{m_{k}}, Sx_{n_{k}})\})$$

$$\leq F(d(Sx_{n_{k}}, Sx_{n_{k}+1}) + d(Sx_{n_{k}+1}, Sx_{n_{k}}) + d(Sx_{m_{k}}, Sx_{n_{k}})).$$
Hence by (3.3),(3.5) and (3.6), we have
$$d(Sx_{m_{k}}, Sx_{n_{k}}) \leq 2d(Sx_{k}, Sx_{k-1}) + F(d(Sx_{n_{k}}, Sx_{n_{k}+1}) + d(Sx_{n_{k}+1}, Sx_{n_{k}}) + d(Sx_{m_{k}}, Sx_{n_{k}})))$$

$$\leq 2d(Sx_{k}, Sx_{k-1}) + F(d(Sx_{n_{k}-1}, Sx_{n_{k}}) + d(Sx_{n_{k}-1}, Sx_{n_{k}}) + d(Sx_{m_{k}}, Sx_{n_{k}})))$$

$$\leq 2d(Sx_{k}, Sx_{k-1}) + F(2d(Sx_{n_{k}-1}, Sx_{n_{k}}) + d(Sx_{m_{k}}, Sx_{n_{k}})))$$

$$\leq 2d(Sx_{k}, Sx_{k-1}) + F(2d(Sx_{n_{k}-1}, Sx_{n_{k}}) + d(Sx_{m_{k}}, Sx_{n_{k}})))$$

By taking  $k \to \infty$  in above inequality, we have  $\epsilon \leq F(\epsilon) < \epsilon$  which is a contradiction. Hence  $(Sx_n)_{n=0}^{\infty}$  is a Cauchy sequence in X. Since X is a complete metric space, there exists  $t \in X$  such that  $\lim_{n\to\infty} Sx_n = t$ . Also  $\lim_{n\to\infty} Tx_n = t$ .

Since T is continuous, we have  $\lim_{n\to\infty} T^2 x_n = Tt$  and  $\lim_{n\to\infty} TSx_n = Tt$ . So  $\lim_{n\to\infty} STx_n = Tt$  because T and S are commute. We now have  $d(STx_n, Sx_n) \leq F(\max\{d(T^2x_n, Tx_n), d(T^2x_n, STx_n), d(Tx_n, Sx_n) + d(Tx_n, STx_n)\}).$ By taking  $n \to \infty$ , we have  $d(Tt, t) \leq F(\max\{d(Tt, t), d(Tt, Tt), d(t, t) + d(t, Tt)\})$ 

This implies d(Tt, t) = 0, hence Tt = t. By (3.1), we have

$$d(St, Sx_n) \le F(\max\{d(Tt, Tx_n), d(Tt, St), d(Tx_n, Sx_n) + d(Tx_n, St)\}).$$

By taking  $n \to \infty$ , we have

$$d(St,t) \le F(\max\{d(Tt,t), d(Tt,St), d(t,t) + d(t,St)\})$$
$$\le F(d(t,St)).$$

This implies St = t. Hence t is a common fixed point of S and T.

Finally, we show that common fixed point of T and S is unique. Let Sw = Tw = w and Sv = Tv = v, then by (3.1)

 $d(w,v) = d(Sw, Sv) \le F(\max\{d(Tw, Tv), d(Tw, Sw), d(Tv, Sv) + d(Tv, Sw)\})$  $\le F(d(w,v)).$ 

This implies w = v. Therefore S and T have a unique common fixed point.  $\Box$ 

**Corollary 3.2.22** Let (X, d) be a complete metric space and let  $S, T : X \to X$  are commuting mappings satisfying the inequality

 $d(Sx, Sy) \le c \cdot \max\{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy) + d(Ty, Sx)\}, \forall x, y \in X, d(Ty, Sy) + d(Ty, Sx)\}, \forall x, y \in X, d(Ty, Sy) + d(Ty, Sy) + d(Ty, Sy)\}$ 

where  $0 \le c < 1$ . If  $SX \subset TX$  and T is continuous then S and T have a unique common fixed point.

**Proof.** Define  $F : \mathbb{R}^+ \to \mathbb{R}^+$  by F(t) = ct for all  $t \in \mathbb{R}^+$ . Then F is satisfied the condition in Theorem 3.2.21. Hence the corollary is obtained directly by Theorem 3.2.21.

**Corollary 3.2.23** Let S be selfmapping of a complete metric space (X, d) satisfying the inequality

$$d(Sx, Sy) \le F(\max\{d(x, y), d(x, Sx), d(y, Sy) + d(y, Sx)\}), \forall x, y \in X$$

where  $F : \mathbb{R}^+ \to \mathbb{R}^+$  is a nondecreasing continuous function such that F(t) < tfor each t > 0. Then S has a unique fixed point.

**Proof.** Let T be the identity mapping in Theorem 3.2.21. Then all conditions of Theorem 3.2.21 are satisfied and so S has a unique fixed point.

**Corollary 3.2.24** Let S be selfmapping of a complete metric space (X, d) satisfying the inequality

$$d(Sx,Sy) \leq c \cdot (\max\{d(x,y),d(x,Sx),d(y,Sy)+d(y,Sx)\}), \forall x,y \in X$$

where  $0 \leq c < 1$ . Then S have a unique fixed point.

**Proof.** Define  $F : \mathbb{R}^+ \to \mathbb{R}^+$  by F(t) = ct for all  $t \in \mathbb{R}^+$ , and Let T be the identity mapping in Theorem 3.2.21. Then all conditions of Theorem 3.2.21 are satisfied and so S has a unique fixed point.

## 3.3 Examples of Applications

The theorem then yields existence and uniqueness theorems for differential and integral equations, as we shall see.

#### Example 3.3.1 Application to Ordinary Differential Equation

Let consider an explicit ordinary differential equation of the first order

$$x' = f(t, x).$$
 (3.7)

An initial value problem for such an equation consists of the equation and an initial condition

$$x(t_0) = x_0$$
 (3.8)

where  $t_0$  and  $x_0$  are given real numbers. Let f be continuous on a rectangle

$$R = \{(t, x) | | t - t_0 \le a, |x - x_0| \le b\}$$

and thus bounded on R, say

$$|f(t,x)| \le c \tag{3.9}$$

for all  $(t, x) \in R$ .

Suppose that f satisfies a Lipschitz condition on R with respect to its second argument, that is, there is a constant k (Lipschitz constant) such that for  $(t, x), (t, y) \in R$ 

$$|f(t,x) - f(t,y)| \le k|x - y|.$$
(3.10)

Then the initial value problem (1) has a unique solution. This solution exist on interval  $[t_0 - \beta, t_0 + \beta]$ , where

$$\beta < \min\{a, \frac{b}{c}, \frac{1}{k}\}.$$
(3.11)

Let C(J) be the metric space of all real-valued continuous functions on Proof the interval  $J = [t_0 - \beta, t_0 + \beta]$  with metric d defined by

$$d(x,y) = \max_{t \in J} |x(t) - y(t)|.$$
(3.12)

(3.13)

C(J) is complete, Let C be the subspace of C(J) consisting of all those function  $x \in C(J)$  that satisfy  $|x(t) - x_0| \le c\beta.$ 

It is not difficult to see that  $\tilde{C}$  is closed in C(J), so that  $\tilde{C}$  is complete. By integration we see that (1) can be written x = Tx, where  $T: \tilde{C} \to \tilde{C}$ is defined by

$$Tx(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau.$$
 (3.14)

Indeed, T is defined for all  $x \in \tilde{C}$ , because  $c\beta < b$  by (3.11), so that if  $x \in \tilde{C}$ , then  $\tau \in J$  and  $(\tau, x(\tau)) \in R$ , and the integral in (3.14) exist since f is continuous on R. To see that T maps  $\tilde{C}$  into itself, we can use (3.14) and (3.9), obtaining

$$|Tx(t) - x_0| = \left| \int_{t_0}^t f(\tau, x(\tau)) \right| d\tau \le c|t - t_0| \le c\beta.$$

We show that T satisfying strict contractive condition on  $\tilde{C}$ . By the Lipschitz condition (3.10),

$$\begin{aligned} |Tx(t) - Ty(t)| &= \left| \int_{t_0}^t f(\tau, x(\tau)) - f(\tau, y(\tau)) d\tau \right| \\ &\leq |t - t_0| \max_{t \in J} k |x(\tau) - y(\tau)| \\ &\leq k \beta d(x, y). \end{aligned}$$

Since the last expression does not depend on t, we can take the maximum on the left and have

$$d(Tx, Ty) \le \alpha d(x, y)$$
 where  $\alpha = k\beta$ .

From (3.11) we see that  $\alpha = k\beta < 1$ , so that

$$d(Tx,Ty) \le \alpha d(x,v) \le c \cdot \max\{d(x,y), d(x,Tx), d(y,Ty) + d(y,Tx)\},\$$

where  $0 < c < 1, \forall x, y \in \overline{C}$ . Thus implies that T has a unique fixed point  $x \in \widetilde{C}$ , that is, a continuous function x on J satisfying x = Tx. So we have by (3.14)

$$x(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau.$$
**Example 3.3.2 Application to Integral Equation**

$$x(t) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau.$$
An integral equation of the form
$$x(t) = x_0 \int_{t_0}^t h(t, \tau) x(\tau) d\tau = x(t)$$
(2.15)

$$x(t) - \mu \int_{a}^{b} k(t,\tau) x(\tau) d\tau = v(t)$$
(3.15)

is called a Fredholm equation of the second kind. Here, [a, b] is a given interval. x is a function on [a, b] which is unknown.  $\mu$  is a parameter. The kernel k of the equation is a given function on the square  $G = [a, b] \times [a, b]$  and v is a given function on [a, b].

we consider (3.15) on C[a, b], the space of all continuous functions defined on the interval J = [a, b] with metric d given by

a I CI

$$d(x,y) = \max_{t \in J} |x(t) - y(t)|.$$
(3.16)

For apply this theorem it is important to note that C[a, b] is complete. We assume that  $v \in C[a, b]$  and k is continuous on G. Then k is a bounded function on G, say,

$$|k(t,\tau)| \le c \tag{3.17}$$

(3.18)

for all  $(t, \tau) \in G$  Obviously,(3.15)) can be written x = Tx where  $Tx(t) = v(t) + \mu \int_{a}^{b} k(t, \tau) x(\tau) d\tau.$ 

Since v and k are continuous, formular (3.18) defines an operator  $T: C[a, b] \to C[a, b]$ . We now impose a restriction on  $\mu$  such that T becomes a

contraction. From (3.16)to (3.18) we have

$$\begin{split} d(Tx,Ty) &= max|Tx(t) - Ty(t)| \\ &= |\mu| \max_{t \in J} \left| \int_{a}^{b} k(t,\tau)[x(\tau) - y(\tau)d\tau \right| \\ &\leq |\mu| \max_{t \in J} \int_{a}^{b} |k(t,\tau)| \left| x(\tau) - y(\tau) \right| d\tau \\ &\leq |\mu| c \max_{t \in J} |x(\sigma) - y(\sigma)| \int_{a}^{b} d\tau \\ &= |\mu| c d(x,y) (b-a). \end{split}$$
  
This can be written  $d(Tx,Ty) \leq \alpha d(x,y)$ , where  $\alpha = |\mu|c(b-a)$ ,

**right** 
$$|\mu| < \frac{1}{c(b-a)}$$
 eserved

So that,  $d(Tx, Ty) < \alpha d(x, y) < c \cdot \max\{d(x, y), d(x, Tx), d(y, Ty) + d(y, Tx)\}$ where 0 < c < 1,  $\forall x, y \in C[a, b]$ . Thus implies that T has a unique fixed point  $x \in C$ , that is, a continuous function x on [a, b] satisfying x = Tx. So we have by (3.18)  $x(t) = v(t) + \mu \int_a^b k(t, \tau) x(\tau) d\tau$ .

#### Example 3.3.3

Let X = [0,1] with the usual metric d(x,y) = |x-y|. Define  $T : X \to X$  by  $Tx = \frac{1}{5}(x^3 + x^2 + 1), \forall x \in X$ , and define  $\phi : X \to \mathbb{R}^+$  by

$$\phi(x) = \begin{cases} -\frac{3}{2}x + 3 & 0 \le x \le 0.210756 \\ 3x + 1 & 0.210756 < x \le 1. \end{cases}$$
Then  $d(x, Tx) = |x - Tx| = |x - \frac{1}{5}(x^3 + x^2 + 1)|$  and  
**Case 1**  $0 \le x \le 0.210756.$   

$$\phi(x) - \phi(Tx) = \left(-\frac{3}{2}x + 3\right) - \left[-\frac{3}{2}\left(\frac{1}{5}(x^3 + x^2 + 1)\right) + 3\right] \\ = -\frac{3}{2}x + 3 + \frac{3}{2}\left(\frac{1}{5}(x^3 + x^2 + 1)\right) - 3 \\ = \frac{3}{2}\left[\frac{1}{5}(x^3 + x^2 + 1) - x\right] \\ = \frac{3}{2}\left[\frac{1}{5}(x^3 + x^2 + 1) - x\right] \\ = \frac{3}{2}\left[\frac{1}{5}(x^3 + x^2 + 1)\right], \end{cases}$$
so  $d(x, Tx) \le \phi(x) - \phi(Tx)$  where  $0 \le x \le 0.210756.$   
**Case II**  $0.210756 < x \le 1.$   

$$\phi(x) - \phi(Tx) = (3x + 1) - (3\left[\frac{1}{5}(x^3 + x^2 + 1)\right] + 1) \\ = 3x - 3\left(\frac{1}{5}(x^3 + x^2 + 1)\right) \\ = 3|x - \frac{1}{5}(x^3 + x^2 + 1)|, \end{cases}$$
so  $d(x, Tx) \le \phi(x) - \phi(Tx)$  where  $0.210756 < x \le 1.$   
If once  $d(x, Tx) \le \phi(x) - \phi(Tx)$  where  $0.210756 < x \le 1.$   
If once  $d(x, Tx) \le \phi(x) - \phi(Tx)$ ,  $\forall x \in X$ . And for  $x \ne y \in X$  we have  

$$d(Tx, Ty) = |Tx - Ty| = \left|\frac{1}{5}(x^3 + x^2 + 1) - \frac{1}{5}(y^3 + y^2 + 1)\right| \\ = \frac{1}{5}|x - y||x^2 + xy + y^2 + x + y| \\ = \frac{1}{5}|x - y||x^2 + xy + y^2 + x + y| \\ = \frac{1}{5}|x - y|| = d(x, y),$$

so d(Tx, Ty) < d(x, y). Thus T satisfies the condition (2) of theorem 3.1.2. By Theorem 3.1.2 T has a fixed point. Let  $x_0 = 0$  and let  $x_n = Tx_{n-1}$ ,  $n \in N$ . We obtain that

| 010101 |                           |                |                  |
|--------|---------------------------|----------------|------------------|
|        |                           | $T(x_n)$       | $ x_n - T(x_n) $ |
|        | $x_1 = 0.200000000000$    | 0.209600000000 | 0.00960000000    |
|        | $x_2 = 0.209600000000$    | 0.210628068147 | 0.001028068147   |
|        | $x_3 = 0.210628068147$    | 0.210741705054 | 0.000113636907   |
|        | $x_4 = 0.210741705054$    | 0.210754308163 | 0.000012603109   |
|        | $x_5 = 0.210754308163$    | 0.210755706453 | 0.000001398290   |
|        | $x_6 = 0.210755706453$    | 0.210755861597 | 0.000000155144   |
|        | $x_7 = 0.210755861597$    | 0.210755878811 | 0.000000017214   |
|        | $x_8 = 0.210755878811$    | 0.210755880721 | 0.000000001910   |
|        | $x_9 = 0.210755880721$    | 0.210755880933 | 0.000000000212   |
|        | $x_{10} = 0.210755880933$ | 0.210755880956 | 0.00000000023    |

By using MATLAB , the fixed point of T is approximated 0.210756 .



Figure 3.1: The relation of graph between  $y = \frac{1}{5}(x^3 + x^2 + 1)$  and y = x.