
CHAPTER 3

MAIN RESULTS

This chapter is divided into 3 sections. Several fixed point theorems of

selfmappings in a complete metric space are given in Section 3.1. These results

generalize those in [1] and [10]. In Section 3.2, several common fixed point the-

orems of two mappings are studied and we obtain many results which generalize

those in [1] and [10]. In the last section, Section 3.3, we present some examples of

applications.

3.1 Fixed Point of Selfmappings in Metric Spaces

Lemma 3.1.1 Let (X, d) be a metric space, and let T : X → X. Let x0 ∈ X be

fixed, define xn = Txn−1, n ∈ N. If there exists a mapping Φ : X → R+

such that

d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

then (xn) is Cauchy in X.

Proof. Choose any x0 ∈ X and define the sequence (xn) by xn = Txn−1, n ∈ N.

Then

d(xn, xn+1) = d(xn, Txn) ≤ Φ(xn)− Φ(Txn) = Φ(xn)− Φ(xn+1).

Define an = Φ(xn), n = 1, 2, . . .. It is easy to see that the sequence (an) is non-

negative real sequence and nonincreasing. Thus (an) is a convergent sequence, so

it is Cauchy.

For m,n ∈ N with m > n, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . . + d(xm−1, xm)

≤ (Φ(xn)− Φ(xn+1)) + (Φ(xn+1)− Φ(xn+2)) + . . . + (Φ(xm−1)− Φ(xm))

= Φ(xn)− Φ(xm) = an − am.
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Since (an) is Cauchy, it implies that (xn) is Cauchy in X.

Theorem 3.1.2 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, x), c1d(Tx, y) + c2d(Tx, x)}, ∀x 6= y ∈ X,

where c1 > 0, c2 > 0 and c1 + c2 < 1 Then T has a unique fixed point.

Proof. By Lemma 3.1.1, (xn) is Cauchy in X. Since X is complete, we have that

(xn) is convergent in X. Hence there exists x ∈ X such that limn→∞ xn = x. Now,

we show that x is a fixed point of T .

CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, x), c1d(Tx, xnk

) + c2d(Tx, x)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(Tx, x) + c2d(Tx, x)}
≤ max{(c1 + c2)d(Tx, x)}
= (c1 + c2)d(Tx, x) (since c1 + c2 < 1).

Hence d(Tx, x) = 0 , so Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose

that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, u), c1d(Tu, v) + c2d(Tu, u)}
≤ max{d(u, v), d(v, u), c1d(u, v) + c2d(u, u)}
≤ max{d(u, v), c1d(u, v)}
= d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤
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Corollary 3.1.3 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, x), c1d(Tx, y), c2d(Tx, x)},∀x 6= y ∈ X,

where c1 > 0, c2 > 0 and c1 + c2 < 1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.3 implies (2) of Theorem 3.1.2, the

corollary is directly obtained by Theorem 3.1.2.

Theorem 3.1.4 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, x), c1d(Ty, y) + c2d(Tx, y)}, ∀x 6= y ∈ X,

where c1 > 0 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n ∈ N. By Lemma 3.1.1, (xn) is Cauchy

in X. Since X is complete, we have that (xn) is convergent in X.

Hence there exists x ∈ X such that limn→∞ xn = x. Now, we show that x is a

fixed point of T .

CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, x), c1d(Txnk

, xnk
) + c2d(Tx, xnk

)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(x, x) + c2d(Tx, x)}
= c2d(Tx, x).
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Since 0 < c2 < 1, it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a

fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v. Suppose

that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, u), c1d(Tv, v) + c2d(Tu, v)}
≤ max{d(u, v), d(v, u), c1d(v, v) + c2d(u, v)}
≤ max{d(u, v), c2d(u, v)}
= d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤

Corollary 3.1.5 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, x), c1d(Ty, y), c2d(Tx, y)},∀x 6= y ∈ X,

where c1 < 0 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.5 implies (2) of Theorem 3.1.4, the

corollary is directly obtained by Theorem 3.1.4.

Theorem 3.1.6 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, x), c1d(Ty, y) + c2d(Tx, x)},∀x 6= y ∈ X,

where c1 > 0 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n ∈ N. By Lemma 3.1.1, (xn) is Cauchy

in X. Since X is complete, we have that (xn) is convergent in X.

Hence there exists x ∈ X such that limn→∞ xn = x. Now, we show that x is a

fixed point of T .
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CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, x), c1d(Txnk

, xnk
) + c2d(Tx, x)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(x, x) + c2d(Tx, x)}
= c2d(Tx, x),

Since 0 < c2 < 1, it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a

fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v.

Suppose that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, u), c1d(Tv, v) + c2d(Tu, u)}
≤ max{d(u, v), d(v, u), c1d(v, v) + c2d(u, u)}
= d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤

Corollary 3.1.7 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, x), c1d(Ty, y), c2d(Tx, x)},∀x 6= y ∈ X,

where 0 < c1 < 1 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.7 implies (2) of Theorem 3.1.6, the

corollary is directly obtained by Theorem 3.1.6.

Theorem 3.1.8 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that
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(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, y), c1d(Ty, x) + c2d(Tx, y)}, ∀x 6= y ∈ X,

where c1 > 0, c2 > 0 and c1 + c2 = 1 Then T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n ∈ N. By Lemma 3.1.1, (xn) is Cauchy

in X. Since X is complete, we have that (xn) is convergent in X.

Hence there exists x ∈ X such that limn→∞ xn = x. Now, we show that x is a

fixed point of T .

CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, xnk

), c1d(Txnk
, x) + c2d(Tx, xnk

)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(x, x) + c2d(Tx, x)}
= c2d(Tx, x).

Since 0 < c2 < 1, it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a

fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v.

Suppose that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, v), c1d(Tv, u) + c2d(Tu, v)}
≤ max{d(u, v), d(v, v), c1d(v, u) + c2d(u, v)}
≤ max{d(u, v), (c1 + c2)d(u, v)}
= d(u, v) (since c1 + c2 = 1),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤

Theorem 3.1.9 Let (X, d) be a complete metric space and let T : X → X. Suppose

that there exists a mapping Φ : X → R+ such that
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(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, y), c1d(Ty, x), c2d(Tx, y)},∀x 6= y ∈ X,

where 0 < c1 < 1 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n ∈ N. By Lemma 3.1.1, (xn) is Cauchy

in X. Since X is complete, we have that (xn) is convergent in X.

Hence there exists x ∈ X such that limn→∞ xn = x. Now, we show that x is a

fixed point of T .

CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, xnk

), c1d(Txnk
, x), c2d(Tx, xnk

)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(x, x), c2d(Tx, x)}
= c2d(Tx, x).

Since 0 < c2 < 1, it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a

fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v.

Suppose that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, v), c1d(Tv, u), c2d(Tu, v)}
≤ max{d(u, v), d(v, v), c1d(v, u), c2d(u, v)}
≤ max{d(u, v), c1d(u, v), c2d(u, v)}
= d(u, v) (since 0 < c1, c2 < 1),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤

Theorem 3.1.10 Let (X, d) be a complete metric space and let T : X → X.

Suppose that there exists a mapping Φ : X → R+ such that
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(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, y), c1d(Ty, x) + c2d(Tx, x)},∀x 6= y ∈ X,

where 0 < c1 < 1 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n ∈ N. By Lemma 3.1.1, (xn) is Cauchy

in X. Since X is complete, we have that (xn) is convergent in X.

Hence there exists x ∈ X such that limn→∞ xn = x. Now, we show that x is a

fixed point of T .

CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, xnk

), c1d(Txnk
, x) + c2d(Tx, x)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(x, x) + c2d(Tx, x)}
= c2d(Tx, x).

Since 0 < c2 < 1, it implies that d(Tx, x) = 0 and hence Tx = x. Thus x is a

fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v.

Suppose that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, v), c1d(Tv, u) + c2d(Tu, u)}
≤ max{d(u, v), d(v, v), c1d(u, v) + c2d(u, u)}
≤ max{d(u, v), c1d(u, v)}
= d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤

Corollary 3.1.11 Let (X, d) be a complete metric space and let T : X → X. Sup-

pose that there exists a mapping Φ : X → R+ such that
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(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, y), c1d(Ty, x), c2d(Tx, x)},∀x 6= y ∈ X,

where 0 < c1 < 1 and 0 < c2 < 1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.11 implies (2) of Theorem 3.1.10,

the corollary is directly obtained by Theorem 3.1.10.

Theorem 3.1.12 Let (X, d) be a complete metric space and let T : X → X.

Suppose that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, y), c1d(Tx, y) + c2d(Tx, x)},∀x 6= y ∈ X,

where c1 > 0, c2 > 0 and c1 + c2 < 1 Then T has a unique fixed point.

Proof. Let x0 ∈ X and let xn = Txn−1, n ∈ N. By Lemma 3.1.1, (xn) is Cauchy

in X. Since X is complete, we have that (xn) is convergent in X.

Hence there exists x ∈ X such that limn→∞ xn = x. Now, we show that x is a

fixed point of T .

CaseI. There exists m ∈ N such that xn = x for all n > m. Then

0 = limn→∞ d(Txn, Tx) = limn→∞ d(xn+1, Tx) = d(x, Tx). Hence Tx = x.

CaseII. There exists a subsequence (xnk
) such that xnk

6= x, ∀k ∈ N . By(2), we

have

d(Tx, Txnk
) < max{d(x, xnk

), d(Txnk
, xnk

), c1d(Tx, xnk
) + c2d(Tx, x)}.

By taking k →∞, we have

d(Tx, x) ≤ max{d(x, x), d(x, x), c1d(Tx, x) + c2d(Tx, x)}
= (c1 + c2)d(Tx, x),

so d(Tx, x) = 0 and hence Tx = x. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = u and Tv = v.
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Suppose that u 6= v. Then

d(u, v) = d(Tu, Tv) < max{d(u, v), d(Tv, v), c1d(Tu, v) + c2d(Tu, u)}
≤ max{d(u, v), d(v, v), c1d(u, v) + c2d(u, u)}
≤ max{d(u, v), c1d(u, v)}
= d(u, v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. ¤

Corollary 3.1.13 Let (X, d) be a complete metric space and let T : X → X. Sup-

pose that there exists a mapping Φ : X → R+ such that

(1) d(x, Tx) ≤ Φ(x)− Φ(Tx),∀x ∈ X,

(2) d(Tx, Ty) < max{d(x, y), d(Ty, y), c1d(Tx, y), c2d(Tx, x)},∀x 6= y ∈ X,

where c1 > 0, c2 > 0 and c1 + c2 < 1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.13 implies (2) of Theorem 3.1.12,

the corollary is directly obtained by Theorem 3.1.12.

3.2 Common Fixed Point of Selfmappings in Metric

Spaces

Theorem 3.2.1 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{c1[d(Sx, Sy) + d(Tx, Sy)], c2[d(Tx, Sx) + d(Ty, Sy)]},
∀x 6= y ∈ X, where 0 ≤ c1 ≤ 1/2 and 0 ≤ c2 ≤ 1/2

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.
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Proof. Since T and S satisfy the property(E.A), there exists a sequence (xn) in

X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X. Suppose SX is

complete. Then limn→∞ Sxn = Sa for some a ∈ X, so limn→∞ Txn = Sa.

We show that Ta = Sa.

If there exists n0 ∈ N such that xn = a ∀n ≥ n0, we obtain that Ta = Sa.

If there is a subsequence (xnk
) of (xn) such that xnk

6= a ∀k ∈ N. By (2), we have

d(Txnk
, Ta) < max{c1[d(Sxnk

, Sa)+ d(Txnk
, Sa)], c2[d(Txnk

, Sxnk
)+ d(Ta, Sa)]}.

Take k →∞, we have

d(Sa, Ta) ≤ max{c1[d(Sa, Sa) + d(Sa, Sa)], c2[d(Sa, Sa) + d(Ta, Sa)]}
= c2d(Ta, Sa).

Since 0 < c2 < 1, it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa =

STa = SSa.

If Ta 6= a, by(2), we have

d(Ta, TTa) < max{c1[d(Sa, STa) + d(Ta, STa)], c2[d(Ta, Sa) + d(TTa, STa)]}
≤ max{c1[d(Ta, TTa) + d(Ta, TTa)], c2[d(Ta, Ta) + d(TTa, TTa)]}
= 2c1d(Ta, TTa)

≤ d(Ta, TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common

fixed point of S and T . The proof is similar when TX is assumed to be a complete

subspace of X since TX ⊂ SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u 6= v. By(2), we have

d(u, v) = d(Tu, Tv) < max{c1[d(Su, Sv) + d(Tu, Sv)], c2[d(Tu, Su) + d(Tv, Sv)]}
≤ max{c1[d(Tu, Tv) + d(Tu, Tv)], c2[d(Tu, Tu) + d(Tv, Tv)]}
= 2c1d(Tu, Tv)

≤ d(Tu, Tv) = d(u, v), (3.1)
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which is a contradiction, hence u = v. Therefore T and S have a unique common

fixed point. ¤

Taking c1 = c2 in Theorem 3.2.1, we get the following result:

Corollary 3.2.2 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < c ·max{[d(Sx, Sy) + d(Tx, Sy)], [d(Tx, Sx) + d(Ty, Sy)]},
∀x 6= y ∈ X, where 0 ≤ c ≤ 1/2.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c2 = 0 in Theorem 3.2.1, we have the following result:

Corollary 3.2.3 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < c · (d(Sx, Sy) + d(Tx, Sy)), ∀x 6= y ∈ X, where 0 ≤ c ≤ 1/2.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c1 = 0 in Theorem 3.2.1, we have the following result:

Corollary 3.2.4 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),
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(2) d(Tx, Ty) < c · (d(Tx, Sx) + d(Ty, Sy)),∀x 6= y ∈ X, where 0 ≤ c ≤ 1/2.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Theorem 3.2.5 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c1d(Tx, Sy) + c2d(Ty, Sx), d(Tx, Sx)},
∀x 6= y ∈ X, where c1 ≥ 0 , c2 ≥ 0 and c1 + c2 < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (xn) in

X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X. Suppose SX is

complete. Then limn→∞ Sxn = Sa for some a ∈ X,so limn→∞ Txn = Sa.

We show that Ta = Sa.

If there exists n0 ∈ N such that xn = a ∀n ≥ n0, we obtain that Ta = Sa.

If there is a subsequence (xnk
) of (xn) such that xnk

6= a ∀k ∈ N. By (2), we have

d(Txnk
, Ta) < max{d(Sxnk

, Sa), c1d(Txnk
, Sa) + c2d(Ta, Sxnk

), d(Txnk
, Sxnk

)}.

Take k →∞, we have

d(Sa, Ta) ≤ max{d(Sa, Sa), c1d(Sa, Sa) + c2d(Ta, Sa), d(Sa, Sa)}
= c2d(Ta, Sa).

Since c2 < 1, it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa =
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STa = SSa.

If Ta 6= a, by(2), we have

d(Ta, TTa) < max{d(Sa, STa), c1d(Ta, STa) + c2d(TTa, Sa), d(Ta, Sa)}
≤ max{d(Ta, TTa), c1d(Ta, TTa) + c2d(TTa, Ta), d(Ta, Ta)}
≤ max{d(Ta, TTa), (c1 + c2)d(TTa, Ta)}
= d(Ta, TTa) (since c1 + c2 < 1),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common

fixed point of S and T . The proof is similar when TX is assumed to be a complete

subspace of X since TX ⊂ SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u 6= v. By(2), we have

d(u, v) = d(Tu, Tv) < max{d(Su, Sv), c1d(Tu, Sv) + c2d(Tv, Su), d(Tu, Su)}
≤ max{d(Tu, Tv), c1d(Tu, Tv) + c2d(Tv, Tu), d(Tu, Tu)}
≤ max{d(Tu, Tv), (c1 + c2)d(Tv, Tu)}
= d(Tu, Tv), (since c1 + c2 < 1),

which is a contradiction, hence u = v. Therefore T and S have a unique common

fixed point. ¤

Taking c1 = c2 in Theorem 3.2.5, we get the following result:

Corollary 3.2.6 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c[d(Tx, Sy) + d(Ty, Sx)], d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c < 1/2.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.
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Taking c2 = 0 in Theorem 3.2.5, we have the following result:

Corollary 3.2.7 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), cd(Tx, Sy), d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c1 = 0 in Theorem 3.2.5, we have the following result:

Corollary 3.2.8 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), cd(Ty, Sx), d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Theorem 3.2.9 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c1d(Tx, Sy) + c2d(Ty, Sy), d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c1 < 1 and 0 ≤ c2 < 1.
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(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (xn) in

X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X. Suppose SX is

complete. Then limn→∞ Sxn = Sa for some a ∈ X,so limn→∞ Txn = Sa.

We show that Ta = Sa.

If there exists n0 ∈ N such that xn = a ∀n ≥ n0, we obtain that Ta = Sa.

If there is a subsequence (xnk
) of (xn) such that xnk

6= a ∀k ∈ N. By (2), we have

d(Txnk
, Ta) < max{d(Sxnk

, Sa), c1d(Txnk
, Sa) + c2d(Ta, Sa), d(Txnk

, Sxnk
)}.

Take k →∞, we have

d(Sa, Ta) ≤ max{d(Sa, Sa), c1d(Sa, Sa) + c2d(Ta, Sa), d(Sa, Sa)}
= c2d(Ta, Sa).

Since c2 < 1, it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa =

STa = SSa.

If Ta 6= a, by(2), we have

d(Ta, TTa) < max{d(Sa, STa), c1d(Ta, STa) + c2d(TTa, STa), d(Ta, Sa)}
≤ max{d(Ta, TTa), c1d(Ta, TTa) + c2d(TTa, TTa), d(Ta, Ta)}
≤ max{d(Ta, TTa), c1d(TTa, Ta)}
= d(Ta, TTa) (since c1 < 1),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common

fixed point of S and T . The proof is similar when TX is assumed to be a complete

subspace of X since TX ⊂ SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and
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Tu = Su = u. Suppose u 6= v. By(2), we have

d(u, v) = d(Tu, Tv) < max{d(Su, Sv), c1d(Tu, Sv) + c2d(Tv, Sv), d(Tu, Su)}
≤ max{d(Tu, Tv), c1d(Tu, Tv) + c2d(Tv, Tv), d(Tu, Tu)}
≤ max{d(Tu, Tv), c1d(Tv, Tu)}
= d(Tu, Tv), (since c1 < 1),

which is a contradiction, hence u = v. Therefore T and S have a unique common

fixed point. ¤

Taking c1 = c2 in Theorem 3.2.9, we get the following result:

Corollary 3.2.10 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c[d(Tx, Sy) + d(Ty, Sy)], d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c1 = 0 in Theorem 3.2.9, we have the following result:

Corollary 3.2.11 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), cd(Ty, Sy), d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.
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If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Theorem 3.2.12 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c1d(Ty, Sx) + c2d(Ty, Sy), d(Tx, Sx)},
∀x 6= y ∈ X, where c1 ≥ 0 , c2 ≥ 0 and c1 + c2 < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (xn) in

X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X. Suppose SX is

complete. Then limn→∞ Sxn = Sa for some a ∈ X,so limn→∞ Txn = Sa.

We show that Ta = Sa.

If there exists n0 ∈ N such that xn = a ∀n ≥ n0, we obtain that Ta = Sa.

If there is a subsequence (xnk
) of (xn) such that xnk

6= a ∀k ∈ N. By (2), we have

d(Txnk
, Ta) < max{d(Sxnk

, Sa), c1d(Ta, Sxnk
) + c2d(Ta, Sa), d(Txnk

, Sxnk
)}.

Take k →∞, we have

d(Sa, Ta) ≤ max{d(Sa, Sa), c1d(Ta, Sa) + c2d(Ta, Sa), d(Sa, Sa)}
= (c1 + c2)d(Ta, Sa).

Since c1 + c2 < 1, it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa =

STa = SSa.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



26

If Ta 6= a, by(2), we have

d(Ta, TTa) < max{d(Sa, STa), c1d(TTa, Sa) + c2d(TTa, STa), d(Ta, Sa)}
≤ max{d(Ta, TTa), c1d(TTa, Ta) + c2d(TTa, TTa), d(Ta, Ta)}
≤ max{d(Ta, TTa), c1d(TTa, Ta)}
= d(Ta, TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common

fixed point of S and T . The proof is similar when TX is assumed to be a complete

subspace of X since TX ⊂ SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u 6= v. By(2), we have

d(u, v) = d(Tu, Tv) < max{d(Su, Sv), c1d(Tv, Su) + c2d(Tv, Sv), d(Tu, Su)}
≤ max{d(Tu, Tv), c1d(Tv, Tu) + c2d(Tv, Tv), d(Tu, Tu)}
≤ max{d(Tu, Tv), c1d(Tv, Tu)}
= d(Tu, Tv),

which is a contradiction, hence u = v. Therefore T and S have a unique common

fixed point. ¤

Taking c1 = c2 in Theorem 3.2.12, we get the following result:

Corollary 3.2.13 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c[d(Ty, Sx) + d(Ty, Sy)], d(Tx, Sx)},
∀x 6= y ∈ X, where 0 ≤ c < 1/2.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.
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Theorem 3.2.14 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c1d(Tx, Sx) + c2d(Ty, Sx), d(Tx, Sy)},
∀x 6= y ∈ X, where c1 ≥ 0 , 0 ≤ c2 < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (xn) in

X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X. Suppose SX is

complete. Then limn→∞ Sxn = Sa for some a ∈ X,so limn→∞ Txn = Sa.

We show that Ta = Sa.

If there exists n0 ∈ N such that xn = a ∀n ≥ n0, we obtain that Ta = Sa.

If there is a subsequence (xnk
) of (xn) such that xnk

6= a ∀k ∈ N. By (2), we have

d(Txnk
, Ta) < max{d(Sxnk

, Sa), c1d(Txnk
, Sxnk

) + c2d(Ta, Sxnk
), d(Txnk

, Sa)}.

Take k →∞, we have

d(Sa, Ta) ≤ max{d(Sa, Sa), c1d(Sa, Sa) + c2d(Ta, Sa), d(Sa, Sa)}
= c2d(Ta, Sa).

Since c2 < 1, it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa =

STa = SSa.

If Ta 6= a, by(2), we have

d(Ta, TTa) < max{d(Sa, STa), c1d(Ta, Sa) + c2d(TTa, Sa), d(Ta, STa)}
≤ max{d(Ta, TTa), c1d(Ta, Ta) + c2d(TTa, Ta), d(Ta, TTa)}
≤ max{d(Ta, TTa), c2d(TTa, Ta)}
= d(Ta, TTa),
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which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common

fixed point of S and T . The proof is similar when TX is assumed to be a complete

subspace of X since TX ⊂ SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u 6= v. By(2), we have

d(u, v) = d(Tu, Tv) < max{d(Su, Sv), c1d(Tu, Su) + c2d(Tv, Su), d(Tu, Sv)}
≤ max{d(Tu, Tv), c1d(Tu, Tu) + c2d(Tv, Tu), d(Tu, Tv)}
≤ max{d(Tu, Tv), c2d(Tu, Tv)}
= d(Tu, Tv),

which is a contradiction, hence u = v. Therefore T and S have a unique common

fixed point. ¤

Taking c1 = c2 in Theorem 3.2.14, we get the following result:

Corollary 3.2.15 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c[d(Tx, Sx) + d(Ty, Sx)], d(Tx, Sy)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c1 = 0 in Theorem 3.2.14, we have the following result:

Corollary 3.2.16 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),
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(2) d(Tx, Ty) < max{d(Sx, Sy), cd(Ty, Sx), d(Tx, Sy)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c2 = 0 in Theorem 3.2.14, we have the following result:

Corollary 3.2.17 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), cd(Tx, Sx), d(Tx, Sy)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Theorem 3.2.18 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c1d(Ty, Sx) + c2d(Ty, Sy), d(Tx, Sy)},
∀x 6= y ∈ X, where c1 ≥ 0 , c2 ≥ 0 and c1 + c2 < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.
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Proof. Since T and S satisfy the property(E.A), there exists a sequence (xn) in

X such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈ X. Suppose SX is

complete. Then limn→∞ Sxn = Sa for some a ∈ X,so limn→∞ Txn = Sa.

We show that Ta = Sa.

If there exists n0 ∈ N such that xn = a ∀n ≥ n0, we obtain that Ta = Sa.

If there is a subsequence (xnk
) of (xn) such that xnk

6= a ∀k ∈ N. By (2), we have

d(Txnk
, Ta) < max{d(Sxnk

, Sa), c1d(Ta, Sxnk
) + c2d(Ta, Sa), d(Txnk

, Sa)}.

Take k →∞, we have

d(Sa, Ta) ≤ max{d(Sa, Sa), c1d(Ta, Sa) + c2d(Ta, Sa), d(Sa, Sa)}
= (c1 + c2)d(Ta, Sa).

Since c1 + c2 < 1, it implies that d(Ta, Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, TSa = STa and TTa = TSa =

STa = SSa.

If Ta 6= a, by(2), we have

d(Ta, TTa) < max{d(Sa, STa), c1d(TTa, Sa) + c2d(TTa, STa), d(Ta, STa)}
≤ max{d(Ta, TTa), c1d(TTa, Ta) + c2d(TTa, TTa), d(Ta, TTa)}
≤ max{d(Ta, TTa), c1d(Ta, TTa)}
= d(Ta, TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common

fixed point of S and T . The proof is similar when TX is assumed to be a complete

subspace of X since TX ⊂ SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u 6= v. By(2), we have

d(u, v) = d(Tu, Tv) < max{d(Su, Sv), c1d(Tv, Su) + c2d(Tv, Sv), d(Tu, Sv)}
≤ max{d(Tu, Tv), c1d(Tv, Tu) + c2d(Tv, Tv), d(Tu, Tv)}
≤ max{d(Tu, Tv), c1d(Tu, Tv)}
= d(Tu, Tv),
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which is a contradiction, hence u = v. Therefore T and S have a unique common

fixed point. ¤

Taking c1 = c2 in Theorem 3.2.18, we get the following result:

Corollary 3.2.19 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), c[d(Ty, Sx) + d(Ty, Sy)], d(Tx, Sy)},
∀x 6= y ∈ X, where 0 ≤ c < 1/2.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking c1 = 0 in Theorem 3.2.18, we have the following result:

Corollary 3.2.20 Let S and T be two weakly compatible selfmappings of a metric

space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx, Ty) < max{d(Sx, Sy), cd(Ty, Sy), d(Tx, Sy)},
∀x 6= y ∈ X, where 0 ≤ c < 1.

(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Theorem 3.2.21 Let (X, d) be a complete metric space and let S, T : X → X are

commuting mappings satisfying the inequality

d(Sx, Sy) ≤ F (max{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy) + d(Ty, Sx)}),∀x, y ∈ X

(3.2)
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where F : R+ → R+ is a nondecreasing continuous function such that F (t) < t

for each t > 0. If SX ⊂ TX and T is continuous then S and T have a unique

common fixed point.

proof. Let x0 ∈ X, chose x1 ∈ X such that Sx0 = Tx1. This can be done since

SX ⊂ TX. In general, having chosen xn choose xn+1 such that Sxn = Txn+1.

We shall show that

d(Sxn, Sxn+1) ≤ F (d(Sxn−1, Sxn)). (3.3)

d(Sxn, Sxn+1) ≤ d(Sxn−1, Sxn). (3.4)

By (3.2 ),we have

d(Sxn, Sxn+1) ≤ F (max{d(Txn, Txn+1), d(Txn, Sxn), d(Txn+1, Sxn+1) + d(Txn+1, Sxn)})
≤ F (max{d(Sxn−1, Sxn), d(Sxn−1, Sxn), d(Sxn, Sxn+1) + d(Sxn, Sxn)})
≤ F (max{d(Sxn−1, Sxn), d(Sxn, Sxn+1)}).

If 0 ≤ d(Sxn−1, Sxn) < d(Sxn, Sxn+1), then d(Sxn, Sxn+1) ≤ F (d(Sxn, Sxn+1))

< d(Sxn, Sxn+1) which is a contradiction. Hence d(Sxn−1, Sxn) ≥ d(Sxn, Sxn+1)

and d(Sxn, Sxn+1) ≤ F (d(Sxn−1, Sxn)). Thus (3.3) and (3.4) are satisfied. Thus

the sequence (d(Sxn, Sxn+1))
∞
n=0 is a nonincreasing sequence of positive real num-

ber and therefore has a limit L ≥ 0. We claim that L = 0. Suppose L > 0, by

taking n →∞ in(3.3) and continuity of F , we have

L = lim
n→∞

d(Sxn, Sxn+1) ≤ lim
n→∞

F (d(Sxn−1, Sxn)) = F (L) < L,

which is a contradiction, hence L = 0. Thus limn→∞ d(Sxn, Sxn+1) = 0

Next, we show that (Sxn)∞n=0 is a Cauchy sequence in X.To show this, suppose

not.Then there exist ε > 0 and strictly increasing sequences of positive integer

(mk) and (nk) with mk > nk ≥ k such that

d(Sxmk
, Sxnk

) ≥ ε. (3.5)

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



33

Assume that for each k, mk is the smallest number greater than nk for which (3.5)

holds. By (3.4) and (3.5)

ε ≤ d(Sxmk
, Sxnk

) ≤ d(Sxmk
, Sxmk−1) + d(Sxmk−1, Sxnk

)

≤ d(Sxmk
, Sxmk−1) + ε

≤ d(Sxk, Sxk−1) + ε.

This implies limn→∞ d(Sxmk
, Sxnk

) = ε.

By triangle inequality and (3.4), we have

d(Sxmk
, Sxnk

) ≤ d(Sxmk
, Sxmk+1) + d(Sxmk+1, Sxnk+1) + d(Sxnk+1, Sxnk

)

≤ d(Sxmk
, Sxmk−1) + d(Sxmk+1, Sxnk+1) + d(Sxnk−1, Sxnk

)

≤ 2d(Sxk, Sxk−1) + d(Sxmk+1, Sxnk+1). (3.6)

By (3.2) and (3.4) we have

d(Sxmk+1, Sxnk+1) ≤ F (max{d(Txmk+1, Txnk+1), d(Txmk+1, Sxmk+1), d(Txnk+1, Sxnk+1) +

d(Txnk+1, Sxmk+1)})
≤ F (max{d(Sxmk

, Sxnk
), d(Sxmk

, Sxmk+1), d(Sxnk
, Sxnk+1) +

d(Sxnk
, Sxmk+1)})

≤ F (max{d(Sxmk
, Sxnk

), d(Sxnk
, Sxnk+1) + d(Sxnk

, Sxmk+1)}).

Since d(Sxnk
, Sxmk+1) ≤ d(Sxmk+1, Sxmk

) + d(Sxmk
, Sxnk

), so by (3.2) and (3.4)

we have

d(Sxmk+1, Sxnk+1) ≤ F (max{d(Sxmk
, Sxnk

), d(Sxnk
, Sxnk+1) + d(Sxmk+1, Sxmk

) +

d(Sxmk
, Sxnk

)})
≤ F (d(Sxnk

, Sxnk+1) + d(Sxnk+1, Sxnk
) + d(Sxmk

, Sxnk
)).

Hence by (3.3),(3.5) and (3.6), we have

d(Sxmk
, Sxnk

) ≤ 2d(Sxk, Sxk−1) + F (d(Sxnk
, Sxnk+1) + d(Sxnk+1, Sxnk

) + d(Sxmk
, Sxnk

))

≤ 2d(Sxk, Sxk−1) + F (d(Sxnk−1, Sxnk
) + d(Sxnk−1, Sxnk

) + d(Sxmk
, Sxnk

))

≤ 2d(Sxk, Sxk−1) + F (2d(Sxnk−1, Sxnk
) + d(Sxmk

, Sxnk
))

≤ 2d(Sxk, Sxk−1) + F (2d(Sxk−1, Sxk) + d(Sxmk
, Sxnk

)).
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By taking k →∞ in above inequality, we have ε ≤ F (ε) < ε which is a contradic-

tion. Hence (Sxn)∞n=0 is a Cauchy sequence in X. Since X is a complete metric

space, there exists t ∈ X such thatlimn→∞ Sxn = t. Also limn→∞ Txn = t.

Since T is continuous, we have limn→∞ T 2xn = Tt and limn→∞ TSxn =

Tt. So limn→∞ STxn = Tt because T and S are commute. We now have

d(STxn, Sxn) ≤ F (max{d(T 2xn, Txn), d(T 2xn, STxn), d(Txn, Sxn)+d(Txn, STxn)}).

By taking n →∞, we have

d(Tt, t) ≤ F (max{d(Tt, t), d(Tt, T t), d(t, t) + d(t, T t)})
≤ F (d(Tt, t)).

This implies d(Tt, t) = 0, hence Tt = t.

By (3.1), we have

d(St, Sxn) ≤ F (max{d(Tt, Txn), d(Tt, St), d(Txn, Sxn) + d(Txn, St)}).

By taking n →∞, we have

d(St, t) ≤ F (max{d(Tt, t), d(Tt, St), d(t, t) + d(t, St)})
≤ F (d(t, St)).

This implies St = t. Hence t is a commom fixed point of S and T .

Finally, we show that common fixed point of T and S is unique.

Let Sw = Tw = w and Sv = Tv = v, then by (3.1)

d(w, v) = d(Sw, Sv) ≤ F (max{d(Tw, Tv), d(Tw, Sw), d(Tv, Sv) + d(Tv, Sw)})
≤ F (d(w, v)).

This implies w = v. Therefore S and T have a unique common fixed point. ¤

Corollary 3.2.22 Let (X, d) be a complete metric space and let S, T : X → X are

commuting mappings satisfying the inequality

d(Sx, Sy) ≤ c ·max{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy) + d(Ty, Sx)}),∀x, y ∈ X,

where 0 ≤ c < 1. If SX ⊂ TX and T is continuous then S and T have a unique

common fixed point.
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Proof. Define F : R+ → R+ by F (t) = ct for all t ∈ R+. Then F is satisfied the

condition in Theorem 3.2.21. Hence the corollary is obtained directly by Theorem

3.2.21. ¤

Corollary 3.2.23 Let S be selfmapping of a complete metric space (X, d) satisfying

the inequality

d(Sx, Sy) ≤ F (max{d(x, y), d(x, Sx), d(y, Sy) + d(y, Sx)}),∀x, y ∈ X

where F : R+ → R+ is a nondecreasing continuous function such that F (t) < t

for each t > 0. Then S has a unique fixed point.

Proof. Let T be the identity mapping in Theorem 3.2.21. Then all conditions of

Theorem 3.2.21 are satisfied and so S has a unique fixed point. ¤

Corollary 3.2.24 Let S be selfmapping of a complete metric space (X, d) satisfying

the inequality

d(Sx, Sy) ≤ c · (max{d(x, y), d(x, Sx), d(y, Sy) + d(y, Sx)}), ∀x, y ∈ X

where 0 ≤ c < 1. Then S have a unique fixed point.

Proof. Define F : R+ → R+ by F (t) = ct for all t ∈ R+. and Let T be the identity

mapping in Theorem 3.2.21. Then all conditions of Theorem 3.2.21 are satisfied

and so S has a unique fixed point. ¤

3.3 Examples of Applications

The theorem then yields existence and uniqueness theorems for differential and

integral equations, as we shall see.

Example 3.3.1 Application to Ordinary Differential Equation

Let consider an explicit ordinary differential equation of the first order

x′ = f(t, x). (3.7)
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An initial value problem for such an equation consists of the equation and an

initial condition

x(t0) = x0 (3.8)

where t0 and x0 are given real numbers. Let f be continuous on a rectangle

R = {(t, x)||t− t0 ≤ a, |x− x0| ≤ b}

and thus bounded on R, say

|f(t, x)| ≤ c (3.9)

for all (t, x) ∈ R.

Suppose that f satisfies a Lipschitz condition on R with respect to its

second argument, that is, there is a constant k (Lipschitz constant) such that for

(t, x), (t, y) ∈ R

|f(t, x)− f(t, y)| ≤ k|x− y|. (3.10)

Then the initial value problem (1) has a unique solution. This solution exist on

interval [t0 − β, t0 + β], where

β < min{a,
b

c
,
1

k
}. (3.11)

Proof Let C(J) be the metric space of all real-valued continuous functions on

the interval J = [t0 − β, t0 + β] with metric d defined by

d(x, y) = max
t∈J

|x(t)− y(t)|. (3.12)

C(J) is complete, Let C̃ be the subspace of C(J) consisting of all those function

x ∈ C(J) that satisfy

|x(t)− x0| ≤ cβ. (3.13)

It is not difficult to see that C̃ is closed in C(J), so that C̃ is complete.

By integration we see that (1) can be written x = Tx, where T : C̃ → C̃

is defined by

Tx(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ. (3.14)
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Indeed, T is defined for all x ∈ C̃, because cβ < b by (3.11) , so that if x ∈ C̃,

then τ ∈ J and (τ, x(τ)) ∈ R, and the integral in (3.14) exist since f is continuous

on R. To see that T maps C̃ into itself, we can use (3.14) and (3.9), obtaining

|Tx(t)− x0| =
∣∣∣∣
∫ t

t0

f(τ, x(τ))

∣∣∣∣dτ ≤ c|t− t0| ≤ cβ.

We show that T satisfying strict contractive condition on C̃. By the Lipschitz

condition (3.10),

|Tx(t)− Ty(t)| =

∣∣∣∣
∫ t

t0

f(τ, x(τ))− f(τ, y(τ))dτ

∣∣∣∣
≤ |t− t0|max

t∈J
k|x(τ)− y(τ)|

≤ kβd(x, y).

Since the last expression does not depend on t, we can take the maximum on the

left and have

d(Tx, Ty) ≤ αd(x, y) where α = kβ.

From (3.11) we see that α = kβ < 1, so that

d(Tx, Ty) ≤ αd(x, v) ≤ c ·max{d(x, y), d(x, Tx), d(y, Ty) + d(y, Tx)},

where 0 < c < 1,∀x, y ∈ C̄. Thus implies that T has a unique fixed point x ∈ C̃,

that is, a continuous function x on J satisfying x = Tx. So we have by (3.14)

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ.

¤

Example 3.3.2 Application to Integral Equation

An integral equation of the form

x(t)− µ

∫ b

a

k(t, τ)x(τ)dτ = v(t) (3.15)

is called a Fredholm equation of the second kind. Here,[a, b] is a given interval.

x is a function on [a, b] which is unknown. µ is a parameter. The kernel k of
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the equation is a given function on the square G = [a, b] × [a, b] and v is a given

function on [a, b].

we consider (3.15) on C[a, b], the space of all continuous functions defined on the

interval J = [a, b] with metric d given by

d(x, y) = max
t∈J

|x(t)− y(t)|. (3.16)

For apply this theorem it is important to note that C[a, b] is complete. We assume

that v ∈ C[a, b] and k is continuous on G. Then k is a bounded function on G,

say,

|k(t, τ)| ≤ c (3.17)

for all (t, τ) ∈ G Obviously,(3.15)) can be written x = Tx where

Tx(t) = v(t) + µ

∫ b

a

k(t, τ)x(τ)dτ. (3.18)

Since v and k are continuous, formular (3.18) defines an operator

T : C[a, b] → C[a, b]. We now impose a restriction on µ such that T becomes a

contraction. From (3.16)to (3.18) we have

d(Tx, Ty) = max|Tx(t)− Ty(t)|
= |µ| max

t∈J

∣∣∣∣
∫ b

a

k(t, τ)[x(τ)− y(τ)dτ

∣∣∣∣

≤ |µ| max
t∈J

∫ b

a

| k(t, τ)|
∣∣x(τ)− y(τ)

∣∣ dτ

≤ |µ| c max
t∈J

|x(σ)− y(σ)|
∫ b

a

dτ

= |µ| c d(x, y) (b− a).

This can be written d(Tx, Ty) ≤ αd(x, y), where α = |µ|c(b− a),

|µ| < 1

c(b− a)
.

So that, d(Tx, Ty) < αd(x, y) < c ·max{d(x, y), d(x, Tx), d(y, Ty) + d(y, Tx)}
where 0 < c < 1, ∀x, y ∈ C[a, b]. Thus implies that T has a unique fixed point

x ∈ C, that is, a continuous function x on [a, b] satisfying x = Tx. So we have by

(3.18) x(t) = v(t) + µ
∫ b

a
k(t, τ)x(τ)dτ. ¤
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Example 3.3.3

Let X = [0, 1] with the usual metric d(x, y) = |x − y|. Define T : X → X by

Tx = 1
5
(x3 + x2 + 1),∀x ∈ X, and define φ : X → R+ by

φ(x) =





−3
2
x + 3 0 ≤ x ≤ 0.210756

3x + 1 0.210756 < x ≤ 1.

Then d(x, Tx) = |x− Tx| = |x− 1
5
(x3 + x2 + 1)| and

Case I 0 ≤ x ≤ 0.210756.

φ(x)− φ(Tx) =
(− 3

2
x + 3

)− [− 3

2

(
1

5
(x3 + x2 + 1)

)
+ 3

]

= −3

2
x + 3 +

3

2

(
1

5
(x3 + x2 + 1)

)
− 3

=
3

2

[1

5
(x3 + x2 + 1)− x

]

=
3

2

∣∣x− 1

5
(x3 + x2 + 1)

∣∣,

so d(x, Tx) ≤ φ(x)− φ(Tx) where 0 ≤ x ≤ 0.210756.

Case II 0.210756 < x ≤ 1.

φ(x)− φ(Tx) = (3x + 1)− (
3
[1

5
(x3 + x2 + 1)

]
+ 1

)

= 3x− 3
(1

5
(x3 + x2 + 1)

)

= 3
∣∣x− 1

5
(x3 + x2 + 1)

∣∣,

so d(x, Tx) ≤ φ(x)− φ(Tx) where 0.210756 < x ≤ 1.

Hence d(x, Tx) ≤ φ(x)− φ(Tx),∀x ∈ X. And for x 6= y ∈ X we have

d(Tx, Ty) = |Tx− Ty| =
∣∣1
5
(x3 + x2 + 1)− 1

5
(y3 + y2 + 1)

∣∣

=
1

5

∣∣x3 − y3 + x2 − y2
∣∣

=
1

5
|x− y|

∣∣x2 + xy + y2 + x + y
∣∣

< |x− y| = d(x, y),
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so d(Tx, Ty) < d(x, y). Thus T satisfies the condition (2) of theorem 3.1.2. By

Theorem 3.1.2 T has a fixed point. Let x0 = 0 and let xn = Txn−1, n ∈ N.

We obtain that

xn T (xn) |xn − T (xn)|
x1 = 0.200000000000 0.209600000000 0.00960000000

x2 = 0.209600000000 0.210628068147 0.001028068147

x3 = 0.210628068147 0.210741705054 0.000113636907

x4 = 0.210741705054 0.210754308163 0.000012603109

x5 = 0.210754308163 0.210755706453 0.000001398290

x6 = 0.210755706453 0.210755861597 0.000000155144

x7 = 0.210755861597 0.210755878811 0.000000017214

x8 = 0.210755878811 0.210755880721 0.000000001910

x9 = 0.210755880721 0.210755880933 0.000000000212

x10 = 0.210755880933 0.210755880956 0.000000000023

By using MATLAB , the fixed point of T is approximated 0.210756 .

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1
x

Figure 3.1: The relation of graph between y = 1
5
(x3 + x2 + 1) and y = x.
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