CHAPTER 3
MAIN RESULTS

This chapter is divided into 3 sections. Several fixed point theorems of
selfmappings in a complete metric space are given in Section 3.1. These results
generalize those in [1] and [10]. In Section 3.2, several common fixed point the-
orems of two mappings are studied and we obtain many results which generalize
those in [1] and [10]. In the last section, Section 3.3, we present some examples of

applications.

3.1 Fixed Point of Selfmappings in Metric Spaces

Lemma 3.1.1 Let (X,d) be a metric space, and let T : X — X. Let g € X be
fized, define x,, = Tx,_1,n € N. If there exists a mapping ® : X — RT
such that

d(z,Tz) < ®(x) — ®(Tx),Vr € X,
then (z,) is Cauchy in X.

Proof. Choose any xy € X and define the sequence (z,) by x, = Tz,_1,n € N.
Then

d(xp, xpiq) = d(xp, Txy,) < O(z,) — ©(Txy,) = P(2,) — P(2p41)-

Define a,, = ®(z,),n = 1,2,.... It is easy to see that the sequence (a,) is non-
negative real sequence and nonincreasing. Thus (a,) is a convergent sequence, so
it is Cauchy.

For m,n € N with m > n, we have
d(.ﬁ(]n, xm) S d<xn7 anrl) + d(‘rn+17 xn+2) +...+ d<xm717 xm)

< (@(xn) = (zn11)) + (P(Tnt1) = B(wnya)) + o 4 (P(Z1) — B(wm))

=®O(x,) — P(x) = ap — ap,.



Since (a,) is Cauchy, it implies that (z,) is Cauchy in X.

Theorem 3.1.2 Let (X,d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R such that

(1) d(z,Tx) < ®(z) — ®(Tx),Vz € X,
(2) d(Tz,Ty) < max{d(z,y),d(Ty,x),c1d(Tz,y) + cod(Tx,z)}, Vo #y € X,
where ¢cg > 0,c9 > 0 and ¢; +cg <1 Then T has a unique fized point.

Proof. By Lemma 3.1.1, (x,) is Cauchy in X. Since X is complete, we have that
(@) is convergent in X. Hence there exists x € X such that lim,_, . x, = z. Now,
we show that z is a fixed point of T

Casel. There exists m € N such that z,, = = for all n > m. Then

0=lim,_ o d(Tx,, Tz) = lim, .o d(x,41, Tx) = d(x, Tx). Hence Tx = z.
Casell. There exists a subsequence (x,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tx,Tx,, ) < max{d(z,z,, ), d(Txy,,x),c1d(Tz, z,, ) + cod(Tx, )}
By taking k — oo, we have
d(Tz,z) < max{d(z,z),d(z,x),yd(Tx,z) + cod(Tz, )}
< max{(¢; + c2)d(Tx,x)}
= (1 +c)d(Tz, x) (since ¢1 + ¢ < 1).
Hence d(Tx,z) =0, so Tx = z. Thus x is a fixed point of T.

Finally, we show that fixed point is unique. Let Tu = w and Tv = v. Suppose
that u # v. Then

d(u,v) = d(Tu,Tv) < max{d(u,v),d(Tv,u),c;d(Tu,v) + cod(Tu,u)}
< max{d(u,v),d(v,u), crd(u,v) + cod(u,u)}
< max{d(u,v), c;d(u,v)}

= d(u,v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. 0
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Corollary 3.1.3 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R* such that

(1) d(z,Tx) < ®(z) — ®(Tx),Vr € X,
(2) d(Tz,Ty) < max{d(z,y),d(Ty,z),c1d(Tx,y),cod(Tx,x)},Vr £y € X,
where ¢y > 0,¢c9 > 0 and ¢c1 + co <1 Then T has a unique fized point.

Proof. Since the condition (2) of Corollary 3.1.3 implies (2) of Theorem 3.1.2, the

corollary is directly obtained by Theorem 3.1.2.

Theorem 3.1.4 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — Rt such that

(1) d(z, Tx) < ®(z) — ®(Tx),Vx € X,
(2) d(T%, Ty) < max{d(z,y),d(Ty, x), ad(Ty,y) + c2d(Tx,y) }, Yo #y € X,
where ¢c; >0 and 0 < cg <1 Then T has a unique fized point.

Proof. Let xy € X and let z,, = Tx,, 1, n € N. By Lemma 3.1.1, (x,) is Cauchy
in X. Since X is complete, we have that (z,) is convergent in X.

Hence there exists x € X such that lim,_ ..z, = x. Now, we show that x is a
fixed point of T'.

Casel. There exists m € N such that z,, = = for all n > m. Then

0 =lim, o d(Tx,, Tz) = lim, .o d(xy41, Tx) = d(z, Tx). Hence Tx = z.
Casell. There exists a subsequence (z,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tx,Tx,, ) < max{d(x,z,,), d(Tx,,,x),c1d(Txp,, T, ) + cod(Tx, xp,)}.
By taking £ — oo, we have

d(Tz,z) < max{d(x,z),d(z,x),c1d(z,x) + cod(Tx,x)}

= cod(Tz, x).
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Since 0 < ¢ < 1, it implies that d(Tz,z) = 0 and hence Tz = x. Thus z is a
fixed point of 7'

Finally, we show that fixed point is unique. Let Tu = v and Tv = v. Suppose
that u # v. Then

d(u,v) = d(Tu, Tv) < max{d(u, v),d(Tv,u),cd(Tv,v) + cad(Tu,v)}
< max{d(u,v), d(v,w), c1d(v, v) + cad(u,v)}
< max{d(u, v), csd(u, v)}
= d(u,v),

which is a contradiction, so u = v. Therefore fixed point of T is unique. OJ

Corollary 3.1.5 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R* such that

(1) d(z,Tx) < ®(z) — ®(Tx),Vx € X,
(2> d(T&j, Ty) < max{d(a:, y)7 d<Ty> 33)7 Cld(Tya y)? CQd(Txa y)}> Va 7é Y S X>
where ¢c; < 0 and 0 < cg <1 Then T has a unique fized point.

Proof. Since the condition (2) of Corollary 3.1.5 implies (2) of Theorem 3.1.4, the

corollary is directly obtained by Theorem 3.1.4.

Theorem 3.1.6 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R* such that

(1) d(z,Tx) < ®(x) — ®(Tx),Vx € X,
(2> d(T&?, Ty) A max{d(a:, y)7 d<Ty7 .1'), Cld(T?/a y) Y ng(Tl’, fﬂ)}, Va 7é ye X;
where ¢; >0 and 0 < cg <1 Then T has a unique fized point.

Proof. Let xy € X and let z,, = Tx,,_1, n € N. By Lemma 3.1.1, (z,,) is Cauchy
in X. Since X is complete, we have that (x,) is convergent in X.
Hence there exists x € X such that lim,_ . z, = x. Now, we show that x is a

fixed point of 7.
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Casel. There exists m € N such that z,, = = for all n > m. Then
0 =limy, oo d(Txy, Tz) = lim, oo d(xy41, Tx) = d(z, Tx). Hence Tx = z.
Casell. There exists a subsequence (x,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tz,Tx,, ) < max{d(z,z,, ), d(Tx,, ,x), c1d(Tx,, , 2, ) + cod(Tx, x)}.
By taking £ — oo, we have
d(Tx,x) < max{d(z,z),d(x, ), crd(x,x) + cod(Tx, )}
= cod(Tx, ),

Since 0 < ¢ < 1, it implies that d(Tz,z) = 0 and hence Tz = x. Thus z is a
fixed point of T'.
Finally, we show that fixed point is unique. Let Tw = w and Tv = wv.

Suppose that u # v. Then

d(u,v) = d(Tu, Tv) < max{d(u,v),d(Tv,u), c1d(Tv,v) + cod(Tu,u)}
< max{d(u,v),d(v,u),c;d(v,v) + cod(u,u)}
= d(u,v),
which is a contradiction, so u = v. Therefore fixed point of T is unique. U

Corollary 3.1.7 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R* such that

(1) d(z,Tx) < ®(z) — ¢(Tx),Vx € X,
(2) d(T&Z, Ty) E max{d(x, y)? d<Ty7 ‘T)a Cld<Ty7 y)? CQd(T'T7 SL’)}, Va # Y€ X7
where 0 < c; <1 and 0 < co <1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.7 implies (2) of Theorem 3.1.6, the

corollary is directly obtained by Theorem 3.1.6.

Theorem 3.1.8 Let (X, d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R* such that
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(1) d(z,Tz) < ®(x) — ®(Tz),Vr € X,
(2) d(Tz,Ty) < max{d(z,y),d(Ty,y),c1d(Ty, ) + c2d(Tx,y)}, Vo # y € X,
where ¢; > 0,c0 > 0 and ¢y + co =1 Then T has a unique fixed point.

Proof. Let xyp € X and let z,, = Tx,, 1, n € N. By Lemma 3.1.1, (x,) is Cauchy
in X. Since X is complete, we have that (z,) is convergent in X.

Hence there exists x € X such that lim,_ . x, = x. Now, we show that x is a
fixed point of 7.

Casel. There exists m € N such that z,, = x for all n > m. Then

0 =lim, oo d(Txy,, Tx) = lim, .o d(2y41, Tx) = d(z,Tx). Hence Tx = x.

Casell. There exists a subsequence (z,,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tx, Ty, ) < max{d(z,zy, ), d(Txp,,xn,), 1d(T Ty, , ) + cad(Tx, 2, )}
By taking & — oo, we have
d(Tz,z) < max{d(x,z),d(z,x), cd(z,x) + cod(Tx,x)}
= cod(T'z, ).

Since 0 < ¢ < 1, it implies that d(Tz,z) = 0 and hence Tz = x. Thus z is a
fixed point of 7'
Finally, we show that fixed point is unique. Let Tu = w and Tv = wv.

Suppose that u # v. Then
d(u,v) = d(Tu, Tv) < max{d(u,v),d(Tv,v),crd(Tv,u) + cod(Tu,v)}
< max{d(u,v),d(v,v),c1d(v,u) + cad(u,v)}
< max{d(u,v), (¢; + c2)d(u,v)}
= d(u,v) (since ¢; + 3 = 1),
which is a contradiction, so u = v. Therefore fixed point of T is unique. 0

Theorem 3.1.9 Let (X,d) be a complete metric space and let T : X — X. Suppose
that there exists a mapping ® : X — R* such that
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(1) d(z,Tz) < ®(x) — ®(Tz),Vr € X,
(2) d(Tz,Ty) < max{d(z,y), d(Ty,y),c1d(Ty, x), cod(Tx, y) }, Y # y € X,
where 0 < ¢y <1 and 0 < cg <1 Then T has a unique fized point.

Proof. Let xy € X and let z,, = Tx,,_1, n € N. By Lemma 3.1.1, (x,) is Cauchy
in X. Since X is complete, we have that (z,) is convergent in X.

Hence there exists x € X such that lim,_ . x, = x. Now, we show that x is a
fixed point of 7.

Casel. There exists m € N such that z,, = x for all n > m. Then

0 =lim, oo d(Txy,, Tx) = lim, .o d(2y41, Tx) = d(z,Tx). Hence Tx = z.
Casell. There exists a subsequence (z,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tx,Tx,, ) < max{d(z,z,,), d(Txp,, xn,),c1d(Txy,, x), cod(Tx,x,,)}.
By taking £ — oo, we have

d(Tz,z) < max{d(z,z),d(z,z),c1d(z, x), cod(Tx,x)}
= cod(Tx, ).
Since 0 < ¢ < 1, it implies that d(Tz,z) = 0 and hence Tz = x. Thus z is a
fixed point of 7'

Finally, we show that fixed point is unique. Let Tu = w and Tv = wv.

Suppose that u # v. Then
d(u,v) = d(Tu, Tv) < max{d(u,v),d(Tv,v),c1d(Tv,u), cod(Tu,v)}
< max{d(u,v),d(v,v), cid(v,u), cad(u,v)}
< max{d(u,v), c;d(u,v), cad(u,v)}
= d(u,v) (since 0 < ¢1,¢9 < 1),
which is a contradiction, so u = v. Therefore fixed point of T is unique. 0

Theorem 3.1.10 Let (X,d) be a complete metric space and let T : X — X.
Suppose that there exists a mapping ® : X — R such that
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(1) d(z,Tz) < ®(x) — ®(Tz),Vr € X,
(2) d(Tz,Ty) < max{d(z,y), d(Ty,y),c1d(Ty, ) + c2d(Tx,2)}, Vo # y € X,
where 0 < ¢y <1 and 0 < cg <1 Then T has a unique fized point.

Proof. Let xy € X and let z,, = Tx,,_1, n € N. By Lemma 3.1.1, (x,) is Cauchy
in X. Since X is complete, we have that (z,) is convergent in X.

Hence there exists x € X such that lim,_ . x, = x. Now, we show that x is a
fixed point of 7.

Casel. There exists m € N such that z,, = x for all n > m. Then

0 =lim, oo d(Txy,, Tx) = lim, .o d(2y41, Tx) = d(z,Tx). Hence Tx = z.
Casell. There exists a subsequence (z,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tx,Txy,) < max{d(z,z,,), d(Txpn,, ), c1d(Txy, , ) + cod(Tx,x)}.
By taking £ — oo, we have

d(Tz,z) < max{d(x,z),d(z,x), crd(z,x) + cod(Tx,x)}
= cod(T'z, ).
Since 0 < ¢ < 1, it implies that d(Tz,z) = 0 and hence Tz = x. Thus z is a
fixed point of 7'

Finally, we show that fixed point is unique. Let Tu = w and Tv = wv.

Suppose that u # v. Then
d(u,v) = d(Tu, Tv) < max{d(u,v),d(Tv,v),c1d(Tv,u) + cod(Tu,u)}
< max{d(u,v),d(v,v),c1d(u,v) + cad(u, u)}
< max{d(u,v), c;d(u,v)}
= d(u,v),
which is a contradiction, so u = v. Therefore fixed point of T is unique. 0

Corollary 3.1.11 Let (X, d) be a complete metric space and let T : X — X. Sup-
pose that there exists a mapping ® : X — R such that
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(1) d(z,Tz) < ®(x) — ®(Tz),Vr € X,
(2> d(T[E, Ty) < max{d(x, y)’ d(Ty7 y)v Cld<Ty7 .l’), CQd(Txa ZL‘)}, Va 7é /S X7
where 0 < c; <1 and 0 < cy <1 Then T has a unique fized point.

Proof. Since the condition (2) of Corollary 3.1.11 implies (2) of Theorem 3.1.10,

the corollary is directly obtained by Theorem 3.1.10.

Theorem 3.1.12 Let (X,d) be a complete metric space and let T : X — X.

Suppose that there exists a mapping ® : X — R such that

(1) d(z,Tx) < ®(z) — &(Tx),Vx € X,

(2) d(Tz,Ty) < max{d(x,y),d(Ty,y),ad(Tx,y) + cod(Tx,x)},Vr #y € X,
where ¢c; > 0,c9 > 0 and ¢1 + co <1 Then T has a unique fized point.

Proof. Let xy € X and let z,, = Tx,,_1, n € N. By Lemma 3.1.1, (x,) is Cauchy
in X. Since X is complete, we have that (z,) is convergent in X.

Hence there exists x € X such that lim,_ . x, = x. Now, we show that x is a
fixed point of 7.

Casel. There exists m € N such that z,, = x for all n > m. Then

0 =limy, oo d(Txy, Tz) = lim,, o d(2y41, Tx) = d(z, Tx). Hence Tx = z.
Casell. There exists a subsequence (x,, ) such that z,, # z,Vk € N. By(2), we

have
d(Tx,Txy,) < max{d(z, z,, ), d(TTy,, Tn, ), c1d(Tx, x,, ) + cod(Tx,x)}.
By taking £ — oo, we have

d(Tz,z) < max{d(x,z),d(z,x),c1d(Tx,x) + cod(Tx, )}

= (c1 + )d(Tx, ),

so d(Tz,x) = 0 and hence Tz = x. Thus z is a fixed point of 7.

Finally, we show that fixed point is unique. Let Tu = uw and Tv = wv.
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Suppose that u # v. Then

d(u,v) = d(Tu, Tv) < max{d(u,v),d(Tv,v), c1d(Tu,v) + cod(Tu,u)}
< max{d(u,v),d(v,v),c1d(u,v) + cod(u,u)}
< max{d(u,v), c;d(u,v)}

= d(u,v),
which is a contradiction, so u = v. Therefore fixed point of T is unique. |

Corollary 3.1.13 Let (X,d) be a complete metric space and let T : X — X. Sup-
pose that there exists a mapping ® : X — R such that

(1) d(z,Tz) < ®(x) — ®(Tz),Vr € X,
(2) d(Tz,Ty) < max{d(z,y),d(Ty,y),crd(Tx,y), cod(Tx,x)}, Vo #y € X,
where ¢; > 0,c0 > 0 and ¢; + ¢ < 1 Then T has a unique fixed point.

Proof. Since the condition (2) of Corollary 3.1.13 implies (2) of Theorem 3.1.12,
the corollary is directly obtained by Theorem 3.1.12.

3.2 Common Fixed Point of Selfmappings in Metric

Spaces

Theorem 3.2.1 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < max{c[d(Sx, Sy) + d(Tz, Sy)], co[d(Tz, Sx) + d(Ty, Sy)]},
Ve £y e X, where 0 < c¢; <1/2 and 0 < ¢y < 1/2

(3) TX C SX.

If SX or TX s a complete subspace of X, thenT' and S have a unique commom
fixed point.
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Proof. Since T and S satisfy the property(E.A), there exists a sequence (x,) in
X such that lim,, o Tz, = lim, ., Sz, = t for some t € X. Suppose SX is
complete. Then lim,,_, o, Sx,, = Sa for some a € X, so lim,,_., Tz, = Sa.

We show that Ta = Sa.

If there exists ng € N such that x,, = a Vn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,, ) of (z,) such that z,, # a Vk € N. By (2), we have
d(Tzy,,Ta) < max{c[d(Szy,,,Sa) + d(Tx,,, Sa)l, cld(Txn, , Sxy,,) +d(Ta, Sa)]}.
Take k — oo, we have

d(Sa,Ta) < max{c,[d(Sa, Sa) + d(Sa, Sa)], c2[d(Sa, Sa) + d(Ta, Sa)]}
= cod(Ta, Sa).
Since 0 < ¢o < 1, it implies that d(T'a,Sa) = 0, hence Ta = Sa.
Since T" and S are weakly compatible, T'Sa = STa and TTa = T'Sa =

STa = SSa.
If Ta # a, by(2), we have

d(Ta,TTa) < max{c;[d(Sa, STa) + d(Ta,STa)l,cz[d(Ta,Sa) + d(TTa, STa)|}
< max{c[d(Ta,TTa) + d(Ta,TTa)|,cs[d(Ta,Ta) + d(TTa,TTa)|}
= 2c1d(Ta,TTa)
< d(Ta,TTa),
which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T'. The proof is similar when T'X is assumed to be a complete
subspace of X since TX C SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u # v. By(2), we have

d(u,v) = d(Tu, Tv) < max{ci[d(Su, Sv) + d(T'u, Sv)], co[d(Tu, Su) + d(Tv, Sv)]}
< max{c [d(Tu, Tv) + d(Tu, Tv)], co[d(Tu, Tu) + d(Tv, Tv)| }
= 2¢1d(Tu, Tv)

< d(Tu,Tv) = d(u,v), (3.1)
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which is a contradiction, hence u = v. Therefore T" and S have a unique common

fixed point. U
Taking ¢; = ¢ in Theorem 3.2.1, we get the following result:

Corollary 3.2.2 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < ¢-max{[d(Sz, Sy) + d(Tx, Sy)], [d(Tz,Sz) +d(Ty, Sy)|},
Ve £y € X, where 0 < ¢ < 1/2.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.

Taking ¢s = 0 in Theorem 3.2.1, we have the following result:

Corollary 3.2.3 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),
(2) d(Tx,Ty) < c- (d(Sz,Sy) +d(Tx,Sy)),Yr #y € X, where 0 < ¢ < 1/2.
(3) TX Cc SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Taking ¢; = 0 in Theorem 3.2.1, we have the following result:

Corollary 3.2.4 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),
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(2) d(Tz,Ty) < c- (d(Tx,Sz) +d(Ty, Sy)),Ve #y € X, where 0 < ¢ < 1/2.
(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.

Theorem 3.2.5 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sz, Sy),c1d(Tz, Sy) + cod(Ty, Sx),d(Tz, Sx)},

Ve#£ye X, where c; >0, c0 >0 and ¢y + ¢ < 1.
(3) TX C SX.

If SX or TX s a complete subspace of X, thenT' and S have a unique commom
fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (z,) in
X such that lim, . Tz, = lim, .. Sx, = t for some t € X. Suppose SX is
complete. Then lim,,_. ., Sx,, = Sa for some a € X ,so lim,,_,o Tz, = Sa.

We show that T'a = Sa.

If there exists ng € N such that x, = a VYn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,,) of (z,) such that z,, # a Vk € N. By (2), we have
d(Txy,,Ta) < max{d(Sz,,,Sa),c1d(Lx,,,Sa) + cod(Ta, Sz, ), d(Tx,,, STy, )}
Take k£ — oo, we have

d(Sa,Ta) < max{d(Sa, Sa),c1d(Sa,Sa) + cod(Ta,Sa),d(Sa, Sa)}
= cod(Ta, Sa).

Since ¢y < 1, it implies that d(T'a, Sa) = 0, hence Ta = Sa.
Since T" and S are weakly compatible, T'Sa = STa and TTa = TSa =
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STa = SSa.
If Ta # a, by(2), we have

d(Ta,TTa) < max{d(Sa,STa),c1d(Ta, STa) + cod(TTa, Sa),d(Ta, Sa)}
<max{d(Ta,TTa),c;d(Ta,TTa) + cod(TTa,Ta),d(Ta,Ta)}
< max{d(Ta,TTa),(c; + c2)d(TTa,Ta)}
=d(Ta,TTa) (since c1 + ¢ < 1),
which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T'. The proof is similar when 7' X is assumed to be a complete
subspace of X since TX C SX.
Finally, we show common fixed point is unique. Let Tv = Sv = v and
Tu = Su = u. Suppose u # v. By(2), we have
d(u,v) = d(Tu, Tv) < max{d(Su, Sv), c1d(Tu, Sv) + cod(Tv, Su),d(Tu, Su)}
< max{d(Tu, Tv), c1d(Tu, Tv) + cod(Tv, Tw),d(Tu, Tu)}
< max{d(Tu, Tv), (¢; + c2)d(Tv,Tu)}
=d(Tu,Tv), (since ¢ + ¢y < 1),

which is a contradiction, hence u = v. Therefore T" and S have a unique common

fixed point. O
Taking ¢; = ¢y in Theorem 3.2.5, we get the following result:

Corollary 3.2.6 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tw, Ty) < max{d(Sz, Sy). cld(T'z, Sy) + d(Ty, Sz)], d(Tx, Sx)},
Ve #y € X, where 0 < c < 1/2.

(3) TX C SX.

If SX or TX s a complete subspace of X, thenT' and S have a unique commom
fixed point.
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Taking ¢, = 0 in Theorem 3.2.5, we have the following result:

Corollary 3.2.7 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx,Sy),cd(Tz, Sy),d(Tx,Sx)},
Vo #y e X, where 0 < ¢ < 1.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fized point.

Taking ¢; = 0 in Theorem 3.2.5, we have the following result:

Corollary 3.2.8 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz, Ty) < max{d(Sx, Sy),cd(Ty, Sx),d(Tx,Sx)},
Ve #y e X, where 0 < ¢ < 1.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.

Theorem 3.2.9 Let S and T be two weakly compatible selfmappings of a metric
space (X,d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < max{d(Sx, Sy),c1d(Tx, Sy) + c2d(Ty, Sy),d(Tz, Sx)},
Ve#£ye X, where 0 < ¢y <1 and0<cy < 1.
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(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (z,) in
X such that lim, .. Tz, = lim, . Sx, = t for some t € X. Suppose SX is
complete. Then lim,, .., Sx,, = Sa for some a € X so lim,, .., Tz, = Sa.

We show that T'a = Sa.

If there exists ng € N such that x,, = a Yn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,, ) of (z,) such that z,, # a Vk € N. By (2), we have
d(Tx,,,Ta) < max{d(Sz,,, Sa),c;d(Tx,,, Sa) + c2d(Ta, Sa),d(Tx,,, Sz, )}
Take k — oo, we have

d(Sa,Ta) < max{d(Sa, Sa),c1d(Sa,Sa)+ cod(Ta,Sa),d(Sa, Sa)}
= cod(Ta, Sa).

Since ¢y < 1, it implies that d(T'a,Sa) = 0, hence Ta = Sa.

Since T and S are weakly compatible, T'Sa = STa and TTa = TSa =
STa = SSa.
If Ta # a, by(2), we have

d(Ta,TTa) < max{d(Sa,STa),c1d(Ta,STa) + cod(TTa,STa),d(Ta,Sa)}
<max{d(Ta,TTa),c1d(Ta,TTa) + cod(TTa,TTa),d(Ta,Ta)}
< max{d(Ta,TTa),c1d(TTa,Ta)}

=d(Ta,TTa) (since ¢; < 1),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T'. The proof is similar when 7'X is assumed to be a complete
subspace of X since TX C SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and
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Tu = Su = u. Suppose u # v. By(2), we have

d(u,v) = d(Tu, Tv) < max{d(Su, Sv), c;d(Tu, Sv) + cod(Tv, Sv),d(Tu, Su)}
< max{d(Tu, Tv), c;d(Tu,Tv) + cod(Tv, Tv),d(Tu, Tu)}
< max{d(Tu, Tv),c1d(Tv,Tu)}

= d(Tu, Tv), (since ¢; < 1),

which is a contradiction, hence u = v. Therefore T" and S have a unique common

fixed point. O
Taking ¢; = ¢o in Theorem 3.2.9, we get the following result:

Corollary 3.2.10 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(T'z,Ty) < max{d(Sz, Sy), cld(Tx, Sy) + d(Ty, Sy)], d(Tx, Sz},
Ve #ye X, where 0 < c < 1.

(3) TX C SX.

If SX or TX s a complete subspace of X, thenT' and S have a unique commom
fixed point.

Taking ¢; = 0 in Theorem 3.2.9, we have the following result:

Corollary 3.2.11 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx, Sy),cd(Ty, Sy),d(Tz, Sz)},
Ve #ye X, where 0 < c < 1.

(3) TX C SX.
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If SX or TX s a complete subspace of X, then T' and S have a unique commom

fixed point.

Theorem 3.2.12 Let S and T be two weakly compatible selfmappings of a metric
space (X,d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < max{d(Swx, Sy),c1d(Ty, Sx) + c2d(Ty, Sy),d(Tz, Sx)},

Ve #£ye X, where c; >0, ¢ >0 and 1+ ¢ < 1.
(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fized point.

Proof. Since 7" and S satisfy the property(E.A), there exists a sequence (z,) in
X such that lim,, .o Tz, = lim, ., Sz, = t for some t € X. Suppose SX is
complete. Then lim,,_ ., Sz, = Sa for some a € X ,s0 lim,,_.o, Tz, = Sa.

We show that T'a = Sa.

If there exists ng € N such that xz,, = a Vn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,, ) of (z,) such that z,, # a Vk € N. By (2), we have
d(Txy,,Ta) < max{d(Sz,,,Sa),cid(Ta, Sz,,) + c2d(Ta, Sa),d(Tx,,, Sty,)}-
Take k — oo, we have

d(Sa,Ta) < max{d(Sa, Sa),c1d(Ta, Sa) + cod(Ta, Sa),d(Sa, Sa)}
=(c1 + &)d(Ta, Sa).
Since ¢; + ¢ < 1, it implies that d(7T'a, Sa) = 0, hence T'a = Sa.

Since T" and S are weakly compatible, T'Sa = STa and TTa =T Sa =
STa = SSa.
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If Ta # a, by(2), we have

d(Ta,TTa) < max{d(Sa,STa),c1d(TTa,Sa) + cod(TTa,STa),d(Ta,Sa)}
<max{d(Ta,TTa),c;d(TTa,Ta)+ cod(TTa,TTa),d(Ta,Ta)}
< max{d(Ta,TTa),c1d(TTa,Ta)}

=d(Ta,TTa),

which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T'. The proof is similar when 7T'X is assumed to be a complete
subspace of X since TX C SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u # v. By(2), we have

d(u,v) = d(Tu, Tv) < max{d(Su, Sv),c1d(Tv, Su) + cod(Tv, Sv),d(Tu, Su)}
< max{d(Tu,Tv),c;d(Tv,Tu) + cod(Tv, Tv),d(Tu, Tu)}
< max{d(Tu, Tv),c1d(Tv,Tu)}

=d(Tu,Tv),

which is a contradiction, hence u = v. Therefore 7" and S have a unique common

fixed point. U
Taking ¢; = ¢ in Theorem 3.2.12, we get the following result:

Corollary 3.2.13 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sz, Sy), c[d(Ty, Sx) + d(Ty, Sy)], d(T'z, Sx)},
Vo £y € X, where 0 < ¢ < 1/2.

(3) TX C SX.

If SX or TX s a complete subspace of X, thenT' and S have a unique commom
fixed point.



27

Theorem 3.2.14 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < max{d(Sx, Sy),c1d(Tx,Sx) + cod(Ty, Sx),d(Tx, Sy)},

Ve #ye X, wherec; >0, 0<cy<1.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fixed point.

Proof. Since T and S satisfy the property(E.A), there exists a sequence (x,) in
X such that lim,, o Tz, = lim, .. Sz, = t for some t € X. Suppose SX is
complete. Then lim,,_, ., Sx,, = Sa for some a € X ,so lim,,_,o Tz, = Sa.

We show that T'a = Sa.

If there exists ng € N such that z,, = a Vn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,, ) of (z,) such that z,, # a Vk € N. By (2), we have
d(Txy,,Ta) < max{d(Sz,,, Sa),c1d(Tzy,,Sx,, )+ c2d(Ta, Sz, ),d(Tx,,,Sa)}.
Take k — oo, we have

d(Sa,Ta) < max{d(Sa, Sa),c1d(Sa, Sa) + c2d(Ta, Sa),d(Sa, Sa)}
= cpd(Ta,Sa).
Since ¢y < 1, it implies that d(T'a, Sa) = 0, hence Ta = Sa.
Since T" and S are weakly compatible, T'Sa = STa and TTa =T Sa =

STa = SSa.
If Ta # a, by(2), we have

d(Ta,TTa) < max{d(Sa,STa),c1d(Ta, Sa) + c2d(TTa, Sa),d(Ta,STa)}
<max{d(Ta,TTa),c1d(Ta,Ta)+ cad(TTa,Ta),d(Ta, TTa)}
< max{d(Ta,TTa),cod(TTa,Ta)}
=d(Ta,TTa),
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which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T'. The proof is similar when T'X is assumed to be a complete
subspace of X since TX C SX.

Finally, we show common fixed point is unique. Let Tv = Sv = v and

Tu = Su = u. Suppose u # v. By(2), we have

d(u,v) = d(Tu, Tv) <max{d(Su, Sv), c;d(Tu, Su) + cod(Tv, Su),d(Tu, Sv)}
< max{d(Tu,Tv),c1d(Tu, Tu) + cod(Tv, Tu),d(Tu, Tv)}
< max{d(Tu,Tv),cod(Tu, Tv)}

= d(Tu,Tv),

which is a contradiction, hence u = v. Therefore T" and S have a unique common

fixed point. O
Taking ¢; = ¢ in Theorem 3.2.14, we get the following result:

Corollary 3.2.15 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx, Sy), c[d(Tz,Sz) + d(Ty,Sxz)|,d(Tx,Sy)},
Ve #ye X, where 0 < ¢ < 1.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.

Taking ¢; = 0 in Theorem 3.2.14, we have the following result:

Corollary 3.2.16 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),
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(2) d(T'z,Ty) < max{d(Sz, Sy),cd(Ty, S),d(Tz, Sy)},
Ve #ye X, where 0 < c < 1.

(3) TX C SX.

If SX or T'X s a complete subspace of X, then T' and S have a unique commom
fixed point.

Taking ¢; = 0 in Theorem 3.2.14, we have the following result:

Corollary 3.2.17 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sxz, Sy),cd(Tz, Sx),d(Tz, Sy)},
Ve #ye X, where 0 < c < 1.

(3) TX C SX.

If SX or T'X is a complete subspace of X, then T and S have a unique commom
fixed point.

Theorem 3.2.18 Let S and T' be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < max{d(Sx, Sy),c1d(Ty, Sx) + c2d(Ty, Sy),d(Tx, Sy)},
Ve£ye X, wherec; >0, ¢ >0 and ¢y +c < 1.

(3) TX c SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom

fized point.
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Proof. Since T and S satisfy the property(E.A), there exists a sequence (x,) in
X such that lim,, o Tz, = lim, ., Sz, = t for some t € X. Suppose SX is
complete. Then lim,,_, ., Sx,, = Sa for some a € X ,so lim,,_,o, Tz, = Sa.

We show that T'a = Sa.

If there exists ng € N such that x,, = a Vn > ng, we obtain that T'a = Sa.

If there is a subsequence (z,, ) of (z,) such that z,, # a Vk € N. By (2), we have
d(Txy,,Ta) < max{d(Sz,,,Sa),cid(Ta, Sx,, )+ cod(Ta, Sa), d(Tx,,,Sa)}.
Take k — oo, we have

d(Sa,Ta) < max{d(Sa, Sa), d(Ta, Sa) + czd(Ta, Sa),d(Sa, Sa)}
= (1 + ¢o)d(Ta, Sa).
Since ¢; + ¢ < 1, it implies that d(T'a,Sa) =0, hence T'a = Sa.
Since T" and S are weakly compatible, T'Sa = STa and TTa = TSa =
STa = SSa.
If Ta # a, by(2), we have
d(Ta,TTa) < max{d(Sa,STa),c1d(TTa,Sa) + cad(TTa,STa),d(Ta,STa)}
< max{d(Ta,TTa),c;d(TTa,Ta)+ cod(TTa,TTa),d(Ta, TTa)}
<max{d(Ta,TTa),c1d(Ta, TTa)}
=d(Ta,TTa),
which is a contradiction. Thus Ta = a, hence Ta = Sa = a, so a is a common
fixed point of S and T'. The proof is similar when 7'X is assumed to be a complete
subspace of X since T'X C SX.
Finally, we show common fixed point is unique. Let Tv = Sv = v and
Tu = Su = u. Suppose u # v. By(2), we have
d(u,v) = d(Tu, Tv) < max{d(Su, Sv), c;d(Tv, Su) + cod(Tv, Sv),d(Tu, Sv)}
< max{d(Tu,Tv),c1d(Tv, Tu) + cod(Tv, Tv),d(Tu, Tv)}
< max{d(Tu,Tv),c1d(Tu, Tv)}

= d(Tu,Tv),
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which is a contradiction, hence u = v. Therefore T" and S have a unique common

fixed point. U
Taking ¢; = ¢o in Theorem 3.2.18, we get the following result:

Corollary 3.2.19 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < max{d(Sxz,Sy),c[d(Ty, Sx) + d(Ty, Sy)|, d(Tz, Sy)},
Ve #y € X, where 0 < c< 1/2.

(3) TX C SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom
fixed point.

Taking ¢; = 0 in Theorem 3.2.18, we have the following result:

Corollary 3.2.20 Let S and T be two weakly compatible selfmappings of a metric
space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tz,Ty) < max{d(Sx, Sy),cd(Ty, Sy),d(Tz,Sy)},
Ve #ye X, where 0 < e < 1.

(3) TX C SX.

If SX or TX s a complete subspace of X, then T' and S have a unique commom
fixed point.

Theorem 3.2.21 Let (X,d) be a complete metric space and let S, T : X — X are

commuting mappings satisfying the inequality

d(Sz,Sy) < F(max{d(Tx,Ty),d(Tx,Sx),d(Ty, Sy) + d(Ty, Sx)}),Vr,y € X
(3.2)
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where F: RY — R" is a nondecreasing continuous function such that F(t) < t
for each t > 0. If SX C TX and T is continuous then S and T have a unique

common fized point.

proof. Let xy € X, chose z; € X such that Sxyg = Txy. This can be done since
SX Cc TX. In general, having chosen x,, choose x,, 1 such that Sz, = Tx,,1.

We shall show that
d(Swy, Sxpi1) < F(d(Szy—1, Sxy)). (3.3)

d(Sp, Sxpi1) < d(Swp_1,Szy). (3.4)

By (3.2 ),we have

d(Szy, Sxpi1) < F(max{d(Tz,, Tryi1),d(Txy, Sxp), d(Txpiq, Stpyr) + d(Txps1, Sxn)})
< F(max{d(Sz,_1,Sx,),d(Sx,_1,S%,),d(STy, Stpni1) + d(Szp, Sz,)})
< F

(max{d(Sx,_1,5%,),d(STy, STni1)}).

If 0 <d(Szp_1,S%,) < d(Sx,, Sxyi1), then d(Sx,, Szpi1) < F(d(Sxy, Sthit))

< d(Sxy, Sx,4+1) which is a contradiction. Hence d(Sx,,—1, Sx,) > d(Sxp, Stpi1)
and d(Swp, Stpy1) < F(d(Szp_1,S%,)). Thus (3.3) and (3.4) are satisfied. Thus
the sequence (d(Sz,, ST,41))5%, is a nonincreasing sequence of positive real num-
ber and therefore has a limit L > 0. We claim that L = 0. Suppose L > 0, by

taking n — oo in(3.3) and continuity of F', we have

L = lim d(Szn, Stni1) < lim F(d(Szp_1, San)) = F(L) < L,

n—oo n—oQ

which is a contradiction, hence L = 0. Thus lim,, . d(Sx,, S,11) =0
Next, we show that (Sz,)%, is a Cauchy sequence in X.To show this, suppose
not.Then there exist ¢ > 0 and strictly increasing sequences of positive integer

(mg) and (ng) with my > ng > k such that

d(Szp,, Sy, ) > €. (3.5)
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Assume that for each k, my is the smallest number greater than ny, for which (3.5)

holds. By (3.4) and (3.5)

€ < d(Sxpy, STy, ) < A(Sxp,, STimy—1) + d(STpy—1, Sp,)

IA

A(STimy, STin,—1) +€
< d(Sxg, Swr_1) + €.
This implies lim,,_.o, d(SZy,, , Sy, ) = €.
By triangle inequality and (3.4), we have
d(STpm, , Stn,) < d(STmy,, STmy+1) + A(STm, 41, SThy+1) + A(STp, 41,5y, )

< d(STimy s STimg—1) + A(STyy115 STpy11) + d(STpy—1, Sy,

< 2d(Swy, Swi—1) + d(STpmy 41, STy 11)- (3.6)
By (3.2) and (3.4) we have

A(STpmy 11, STnt1) < Fmax{d(T v, +1, TTn,+1), AT Ty +1, STingt1) AT X1, STpys1) +
d(T'Tny 41, STmy41)})
< F(max{d(STm,, STy, ), d(STm,s STy +1), d(Sxp, , STy, 1) +
d(Sxy,, STm,41)})
< F(max{d(STm,, Stn, ), d(S%pn,, STp,+1) + d(STp,, STm,+1)})-
Since d(Sxp,, Stmy+1) < d(STpmy 11, ST, ) + d(STy,, Sy, ), so by (3.2) and (3.4)
we have
(ST +155%n,+1) < F(max{d(Sxm,, Sy, ), d(Sp,, STp+1) + d(STpmy+1, STm, ) +
d(STm,, Stn,)})
< F(d(Sxny, Spyi1) + d(SThy 11, ST, ) + d(STim, , Sny))-

Hence by (3.3),(3.5) and (3.6), we have

d(STpm,, Sxp,) < 2d(Swg, Sti_1) + F(d(Sxp,, Stpys1) + d(STpys1, ST, ) + d(STpm,, S, )
< 2d(Sxy, Sxp—1) + F(d(Stp, -1, Sp, ) + d(Sxp, -1, Sp,) + d(STim,, STh,))
< 2d(Swg, Sxp—1) + F(2d(Sxpy—1, STy, ) + d(STpm,, STy, ))
< 2d(Sxy, Sxp_1) + F(2d(Szk_1, Sx)) + d(STimy, SThy))-
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By taking £ — oo in above inequality, we have € < F'(¢) < € which is a contradic-
tion. Hence (Sx,)5, is a Cauchy sequence in X. Since X is a complete metric
space, there exists t € X such thatlim,,_,., Sx,, = t. Also lim,_,., Tz, =t.

Since 7" is continuous, we have lim,,_ oo T?%,, = Tt and lim,,_,o. T'Sx,, =

Tt. So lim,, s STz, = Tt because T and S are commute. We now have
d(STx,, Sz,) < F(max{d(T?z,, Tz,),d(T*z,, STx,),d(Tx,, Sv,)+d(Tx,, STx,)}).
By taking n — oo, we have
d(Tt,t) < F(max{d(Tt,t),d(Tt,Tt),d(t,t) + d(t,Tt)})
< F(d(Tt,t)).

This implies d(T't,t) = 0, hence Tt = t.
By (3.1), we have

d(St, Sz,) < F(max{d(Tt,Tz,),d(Tt,St),d(Tx,, Sz,) + d(Tz,, St)}).
By taking n. — oo, we have

d(St,t) < F(max{d(Tt,t),d(Tt, St),d(t,t) + d(t,St)})
< F(d(t, St)).

This implies St = t. Hence t is a commom fixed point of S and T'.
Finally, we show that common fixed point of 7" and S is unique.

Let Sw = Tw = w and Sv = Tv = v, then by (3.1)

d(w,v) = d(Sw, Sv) < F(max{d(Tw, Tv),d(Tw, Sw),d(Tv, Sv) + d(Tv, Sw)})
< F(d(w,v)).

This implies w = v. Therefore S and T have a unique common fixed point. (]

Corollary 3.2.22 Let (X, d) be a complete metric space and let S,T : X — X are

commuting mappings satisfying the inequality
d(Sz, Sy) < c-max{d(Tz, Ty),d(Tz, Sx),d(Ty, Sy) + d(Ty, Sv)}),Vo,y € X,

where 0 < c < 1. If SX CTX and T is continuous then S and T have a unique

common fized point.
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Proof. Define F': Rt — Rt by F(t) = ct for all t € R*. Then F is satisfied the
condition in Theorem 3.2.21. Hence the corollary is obtained directly by Theorem

3.2.21. 0J

Corollary 3.2.23 Let S be selfmapping of a complete metric space (X, d) satisfying
the inequality

d(Sz, Sy) < F(max{d(x,y), d(z,Sx),d(y, Sy) + d(y,Sx)}),Ve,y € X

where F: RY — RY is a nondecreasing continuous function such that F(t) < t

for each t > 0. Then S has a unique fixed point.

Proof. Let T be the identity mapping in Theorem 3.2.21. Then all conditions of
Theorem 3.2.21 are satisfied and so S has a unique fixed point. O

Corollary 3.2.24 Let S be selfmapping of a complete metric space (X, d) satisfying
the inequality

d(Sz, Sy) < ¢+ (max{d(z,y), d(z, Sx),d(y, Sy) + d(y, Sx)}),Vx,y € X
where 0 < c < 1. Then S have a unique fixed point.

Proof. Define F': RT — R™ by F(t) = ct for all t € RT. and Let T be the identity
mapping in Theorem 3.2.21. Then all conditions of Theorem 3.2.21 are satisfied

and so S has a unique fixed point. O

3.3 Examples of Applications

The theorem then yields existence and uniqueness theorems for differential and

integral equations, as we shall see.
Example 3.3.1 Application to Ordinary Differential Equation

Let consider an explicit ordinary differential equation of the first order

¥ = f(t,x). (3.7)
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An initial value problem for such an equation consists of the equation and an
initial condition

x(to) = xo (3.8)

where ty and xg are given real numbers. Let f be continuous on a rectangle
R={({t,2)||t —to < a,|r — x| < b}

and thus bounded on R, say
[f(tx)] <c (3.9)

for all (t,z) € R.

Suppose that f satisfies a Lipschitz condition on R with respect to its
second argument, that is, there is a constant k (Lipschitz constant) such that for
(t,2),(t,y) € R

[f(t,2) = f(t,y)] < klz—yl. (3.10)

Then the initial value problem (1) has a unique solution. This solution exist on

interval [to — 3,1y + (], where

b 1
5 < winfa, 2, 7} (3.11)
Proof Let C'(J) be the metric space of all real-valued continuous functions on

the interval J = [ty — (3, to + (] with metric d defined by

(. ) = max () - y(1)]. (3.12)

C(J) is complete, Let C' be the subspace of C'(.J) consisting of all those function
x € C(J) that satisfy
|z(t) — xo| < . (3.13)

It is not difficult to see that C'is closed in C'(.J), so that C' is complete.
By integration we see that (1) can be written z = Tz, where T :C — C

is defined by .
Tx(t) = xg +/ f(r,z(r))dr. (3.14)

to
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Indeed, T is defined for all x € C, because ¢8 < b by (3.11) , so that if z € C,
then 7 € J and (7,2(7)) € R, and the integral in (3.14) exist since f is continuous

on R. To see that T maps C into itself, we can use (3.14) and (3.9), obtaining

dr < c|t = to] < ¢f.

[72(0) -0l = | /t:fmm)

We show that T satisfying strict contractive condition on C. By the Lipschitz
condition (3.10),

Ta(t) - Ty(t)] = ] [t - Sy

< |t — _
< [t — to| max klz(r) — y(7)|

< k@d(z,y).

Since the last expression does not depend on ¢, we can take the maximum on the

left and have
d(Tz,Ty) < ad(z, y) where a = k.
From (3.11) we see that a = kf < 1, so that
d(Tz,Ty) < ad(z,v) < c¢-max{d(z,y),d(z, Tx),d(y, Ty) + d(y, Tx)},

where 0 < ¢ < 1,Vz,y € C. Thus implies that 7 has a unique fixed point = € C’,

that is, a continuous function x on J satisfying « = T'z. So we have by (3.14)

z(t) = o +/t f(r,z(r))dr.

Example 3.3.2 Application to Integral Equation
An integral equation of the form

b
x(t) — u/ k(t, T)x(T)dT = v(t) (3.15)

is called a Fredholm equation of the second kind. Here,[a,b] is a given interval.

x is a function on [a,b] which is unknown. g is a parameter. The kernel k of



38

the equation is a given function on the square G = [a,b] X [a,b] and v is a given
function on |a, b].
we consider (3.15) on Cla, b], the space of all continuous functions defined on the

interval J = [a, b] with metric d given by
d(z,y) = max|z(t) — y(t)]. (3.16)

For apply this theorem it is important to note that Cla, b] is complete. We assume
that v € Cla,b] and k is continuous on G. Then k is a bounded function on G,

say,

\k(t,T)| <c (3.17)

for all (t,7) € G Obviously,(3.15)) can be written « = Tz where

Tx(t) = v(t) + u/ k(t, 7)x(T)dr. (3.18)

Since v and k are continuous, formular (3.18) defines an operator
T : Cla,b] — Cla,b]. We now impose a restriction on p such that 7' becomes a

contraction. From (3.16)to (3.18) we have

d(Tz,Ty) = max|Tx(t) ; Ty(t)|
/ k(t,)[z(r) — y(r)dr

= b

< lul rgg]X/ | k(e 7)] |a(7) = y(7)| d7

b
< _
< |l emax |a(0) — y(o) / dr

= |ul ¢ d(z,y) (b—a).

This can be written d(Tx,Ty) < ad(x,y), where a = |p|c(b — a),

i < —
& c(b—a)

So that, d(Tz, Ty) < ad(z,y) < ¢ max{d(z,y),d(z,Tx),d(y, Ty) + d(y, Tx)}

where 0 < ¢ < 1, Va,y € C[a,b]. Thus implies that T" has a unique fixed point
x € C, that is, a continuous function x on [a, b] satisfying 2 = Tx. So we have by

(3.18) 2(t) = o(t) + p [0 k(t, 7)z(7)dr. 0
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Example 3.3.3

Let X = [0,1] with the usual metric d(z,y) = |z — y|. Define T : X — X by
Tx = %(SL’S + 2%+ 1),Vo € X, and define ¢ : X — RT by

—32 43 0 < 2 <0.210756
¢(z) =
3z + 1 0.210756 < = < 1.

Then d(z,Tz) = |z —Tz| =]z — (2* + 2> +1)| and
Case 1 0 < <0.210756.

gf)(x)—gb(Tx):(—gx—l—?))—[—;(%(x?’—kxz—i—l))—i—iﬂ
:—%x+3+g<%(x3+m2+l))—3
—g[%(:ﬁs—l—ﬁ—kl)—x}
3 1, 4 9
:§|x—g(aj + 2 + 1),

sod(z,Tx) < ¢(x) —¢(Tz)  where 0 <z < 0.210756.
Case 11 0.210756 < z <'1.

so d(z,Tx) < ¢(x) — ¢(Tx)  where 0.210756 < x < 1.
Hence d(z,Tz) < ¢(z) — ¢(Tx),Vx € X. And for x # y € X we have

1 1

d(Tz,Ty) = |Tx — Ty| = ’5(963 +a2*+1) — 5(934‘92 +1)]
1

_ g‘x3—y3+m2—y2‘

1 2 2
:gla:—ny +ay+y' +x+y

< |z =yl =d(z,y),
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so d(Tz,Ty) < d(z,y). Thus T satisfies the condition (2) of theorem 3.1.2. By
Theorem 3.1.2 T has a fixed point. Let o =0 and let z, =Tx,_1, n € N.
We obtain that

T T(n) |20 = T'(2)]
21 = 0.200000000000 | 0.209600000000 | 0.00960000000
x2 = 0.209600000000 | 0.210628068147 | 0.001028068147
x3 = 0.210628068147 | 0.210741705054 | 0.000113636907
x4 = 0.210741705054 | 0.210754308163 | 0.000012603109
x5 = 0.210754308163 | 0.210755706453 | 0.000001398290
xe = 0.210755706453 | 0.210755861597 | 0.000000155144
x7 = 0.210755861597 | 0.210755878811 | 0.000000017214
xg = 0.210755878811 | 0.210755880721 | 0.000000001910
xg9 = 0.210755880721 | 0.210755880933 | 0.000000000212
210 = 0.210755880933 | 0.210755880956 | 0.000000000023

By using MATLAB | the fixed point of T is approximated 0.210756 .
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Figure 3.1: The relation of graph between y = %(x?’ +z?+1) and y = .



