CHAPTER 4

CONCLUSION

This research extends the results obtained by D.El Moutawaki [1] and B.Rodjanadid [10]. The new strict contractive conditions are given for selfmappings in complete metric space X to guarantee that selfmappings on X have a unique common fixed point and the iterative methods for computing their common fixed point are given. The followings are the main result of this study.

1. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X$$

(2)
$$d(Tx, Ty) < \max\{d(x, y), d(Ty, x), c_1d(Tx, y) + c_2d(Tx, x)\}, \forall x \neq y \in X,$$

where $c_1 > 0, c_2 > 0$ and $c_1 + c_2 < 1$ Then T has a unique fixed point.

2. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2)
$$d(Tx, Ty) < \max\{d(x, y), d(Ty, x), c_1 d(Tx, y), c_2 d(Tx, x)\}, \forall x \neq y \in X$$

where $c_1 > 0, c_2 > 0$ and $c_1 + c_2 < 1$ Then T has a unique fixed point.

3. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$
 Let Serve C

(2) $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Ty,y) + c_2d(Tx,y)\}, \forall x \neq y \in X,$

where $c_1 > 0$ and $0 < c_2 < 1$ Then T has a unique fixed point.

4. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

- (1) $d(x,Tx) \le \Phi(x) \Phi(Tx), \forall x \in X,$
- (2) $d(Tx,Ty) < \max\{d(x,y), d(Ty,x), c_1d(Ty,y), c_2d(Tx,y)\}, \forall x \neq y \in X,$

where $c_1 > 0$ and $0 < c_2 < 1$ Then T has a unique fixed point.

5. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2) $d(Tx, Ty) < \max\{d(x, y), d(Ty, x), c_1 d(Ty, y) + c_2 d(Tx, x)\}, \forall x \neq y \in X,$

where $c_1 > 0$ and $0 < c_2 < 1$ Then T has a unique fixed point. 6. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2) $d(Tx, Ty) < \max\{d(x, y), d(Ty, x), c_1 d(Ty, y), c_2 d(Tx, x)\}, \forall x \neq y \in X,$

where $c_1 > 0$ and $0 < c_2 < 1$ Then T has a unique fixed point.

7. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2) $d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1d(Ty, x), c_2d(Tx, y)\}, \forall x \neq y \in X,$

where $0 < c_1 < 1$ and $0 < c_2 < 1$ Then T has a unique fixed point.

9. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1) $d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$ (2) $d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1 d(Ty, x) + c_2 d(Tx, x)\}, \forall x \neq y \in X,$

where $0 < c_1 < 1$ and $0 < c_2 < 1$ Then T has a unique fixed point.

10. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x, Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2) $d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1 d(Ty, x), c_2 d(Tx, x)\}, \forall x \neq y \in X,$

where $0 < c_1 < 1$ and $0 < c_2 < 1$ Then T has a unique fixed point.

11. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2)
$$d(Tx, Ty) < \max\{d(x, y), d(Ty, y), c_1d(Tx, y) + c_2d(Tx, x)\}, \forall x \neq y \in X,$$

where $c_1 > 0, c_2 > 0$ and $c_1 + c_2 < 1$ Then T has a unique fixed point.

12. Let (X, d) be a complete metric space and let $T : X \to X$. Suppose that there exists a mapping $\Phi : X \to \mathbb{R}^+$ such that

(1)
$$d(x,Tx) \le \Phi(x) - \Phi(Tx), \forall x \in X,$$

(2) $d(Tx,Ty) < \max\{d(x,y), d(Ty,y), c_1d(Tx,y), c_2d(Tx,x)\}, \forall x \ne y \in X,$

where $c_1 > 0, c_2 > 0$ and $c_1 + c_2 < 1$ Then T has a unique fixed point.

13. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),

- (2) $d(Tx, Ty) < \max\{c_1[d(Sx, Sy) + d(Tx, Sy)] + c_2[d(Tx, Sx) + d(Ty, Sy)]\},\$ $\forall x \neq y \in X, \text{ where } 0 \le c_1 \le 1/2 \text{ and } 0 \le c_2 \le 1/2$
- (3) $TX \subset SX$.

กมยนต

14. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

 T and S satisfy the property(E.A),
 d(Tx,Ty) < c · max{[d(Sx,Sy) + d(Tx,Sy)], [d(Tx,Sx) + d(Ty,Sy)]}, ∀x ≠ y ∈ X, where 0 ≤ c ≤ 1/2.
 TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

15. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),

(2) d(Tx,Ty) < c · (d(Sx,Sy) + d(Tx,Sy)), ∀x ≠ y ∈ X, where 0 ≤ c ≤ 1/2.
(3) TX ⊂ SX.
If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.
16. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2) $d(Tx,Ty) < c \cdot (d(Tx,Sx) + d(Ty,Sy)), \forall x \neq y \in X$, where $0 \le c \le 1/2$.

(3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

17. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

(1) T and S satisfy the property(E.A),
(2) d(Tx,Ty) < max{d(Sx,Sy), c₁d(Tx,Sy) + c₂d(Ty,Sx), d(Tx,Sx)}, ∀x ≠ y ∈ X, where c₁ ≥ 0, c₂ ≥ 0 and c₁ + c₂ < 1.
(3) TX ⊂ SX.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

18. Let S and T be two weakly compatible selfmappings of a metric space (X, d) such that

- (1) T and S satisfy the property(E.A),
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c[d(Tx, Sy) + d(Ty, Sx)], d(Tx, Sx)\},\ \forall x \neq y \in X, \text{ where } 0 \le c < 1/2.$
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

- (1) T and S satisfy the property(E.A),
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Tx, Sy), d(Tx, Sx)\},\$ $\forall x \neq y \in X, \text{ where } 0 \leq c < 1.$
- (3) $TX \subset SX$.

20. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property (E.A)
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Ty, Sx), d(Tx, Sx)\},\$ $\forall x \neq y \in X$, where $0 \leq c < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

21. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property(E.A),
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Tx, Sy) + c_2d(Ty, Sy), d(Tx, Sx)\},\$ $\forall x \neq y \in X$, where $0 \le c_1 < 1$ and $0 \le c_2 < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

- (1) T and S satisfy the property(E.A).
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c[d(Tx, Sy) + d(Ty, Sy)], d(Tx, Sx)\},\$ $\forall x \neq y \in X$, where $0 \leq c < 1$.
- (3) $TX \subset SX$.

23. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property (E.A)
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Ty, Sy), d(Tx, Sx)\},\$ $\forall x \neq y \in X$, where $0 \leq c < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

24. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property (E.A),
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Ty, Sx) + c_2d(Ty, Sy), d(Tx, Sx)\},\$ $\forall x \neq y \in X$, where $c_1 \ge 0$, $c_2 \ge 0$ and $c_1 + c_2 < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

- (1) T and S satisfy the property(E.A).
- (2) $d(Tx,Ty) < \max\{d(Sx,Sy), c[d(Ty,Sx) + d(Ty,Sy)], d(Tx,Sx)\},\$ $\forall x \neq y \in X$, where $0 \leq c < 1/2$.
- (3) $TX \subset SX$.

26. Let S and T be two weakly compatible selfmappings of a metric space (X, d)2020 such that

- (1) T and S satisfy the property (E.A)
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Tx, Sx) + c_2d(Ty, Sx), d(Tx, Sy)\},\$ $\forall x \neq y \in X$, where $c_1 \ge 0$, $0 \le c_2 < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

27. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property(E.A),
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c[d(Tx, Sx) + d(Ty, Sx)], d(Tx, Sy)\},\$ $\forall x \neq y \in X$, where $0 \le c < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

- (1) T and S satisfy the property(E.A).
- $(2) \quad d(Tx,Ty) < \max\{d(Sx,Sy), cd(Ty,Sx), d(Tx,Sy)\},\$ $\forall x \neq y \in X$, where $0 \leq c < 1$.
- (3) $TX \subset SX$.

29. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property (E.A)
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), cd(Tx, Sx), d(Tx, Sy)\}$ $\forall x \neq y \in X$, where $0 \leq c < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

30. Let S and T be two weakly compatible selfmappings of a metric space (X, d)such that

- (1) T and S satisfy the property (E.A),
- (2) $d(Tx, Ty) < \max\{d(Sx, Sy), c_1d(Ty, Sx) + c_2d(Ty, Sy), d(Tx, Sy)\},\$ $\forall x \neq y \in X$, where $c_1 \ge 0$, $c_2 \ge 0$ and $c_1 + c_2 < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

- (1) T and S satisfy the property(E.A).
- (2) $d(Tx,Ty) < \max\{d(Sx,Sy), c[d(Ty,Sx) + d(Ty,Sy)], d(Tx,Sy)\},\$ $\forall x \neq y \in X$, where $0 \leq c < 1/2$.
- (3) $TX \subset SX$.

32. Let S and T be two weakly compatible selfmappings of a metric space (X, d)67.03 such that

- (1) T and S satisfy the property (E.A)
- $(2) \quad d(Tx,Ty) < \max\{d(Sx,Sy), cd(Ty,Sy), d(Tx,Sy)\}$ $\forall x \neq y \in X$, where $0 \leq c < 1$.
- (3) $TX \subset SX$.

If SX or TX is a complete subspace of X, then T and S have a unique commom fixed point.

33. Let (X, d) be a complete metric space and let S, T : X - $\rightarrow X$ are commuting mappings satisfying the inequality

$$d(Sx, Sy) \le F(\max\{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy) + d(Ty, Sx)\}), \forall x, y \in X$$

$$(4.1)$$

 $\rightarrow \mathbb{R}^+$ is a nondecreasing continuous function such that F(t) < twhere $F : \mathbb{R}^+$ for each t > 0.

If $SX \subset TX$ and T is continuous then S and T have a unique common fixed point.

34. Let (X, d) be a complete metric space and let $S, T : X \to X$ are commuting mappings satisfying the inequality

$$d(Sx, Sy) \le c \cdot \max\{d(Tx, Ty), d(Tx, Sx), d(Ty, Sy) + d(Ty, Sx)\}), \forall x, y \in X,$$

where $0 \le c < 1$. If $SX \subset TX$ and T is continuous then S and T have a unique common fixed point.

35. Let S be selfmapping of a complete metric space (X, d) satisfying the inequality

$$d(Sx, Sy) \le F(\max\{d(x, y), d(x, Sx), d(y, Sy) + d(y, Sx)\}), \forall x, y \in X$$

where $F : \mathbb{R}^+ \to \mathbb{R}^+$ is a nondecreasing continuous function such that F(t) < t for each t > 0. Then S has a unique fixed point.

36. Let S be selfmapping of a complete metric space (X, d) satisfying the inequality

 $d(Sx,Sy) \leq c \cdot (\max\{d(x,y),d(x,Sx),d(y,Sy)+d(y,Sx)\}), \forall x,y \in X$

Then S has a unique fixed point.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved