
CHAPTER 2

PRELIMINARIES

In this chapter, we give some notations and definitions that will be used

in the later chapters.

2.1 Stability

2.1.1 Definitions

Consider the system described by

ẋ = f(x, t) (2.1)

where x ∈ Rn, ẋ =

[
dx1

dt
,
dx2

dt
, . . . ,

dxn

dt

]
and f is a vector having components

fi(x1, ..., xn, t), i = 1, 2, ..., n. We shall assume that fi’s are continuous and satisfy

standard conditions, such as having continuous first partial derivatives so that the

solution of (2.1) exists and is unique for the given initial conditions. If fi do not

depend explicitly on t, (2.1) is called autonomous (otherwise, nonautonomous).

If f(c, t) = 0 for all t, where c is some constant vector, then it follows at once

from (2.1) that if x(t0) = c then x(t) = c for all t ≥ t0. Thus solutions starting

at c remain there, and c is said to be an equilibrium or critical point. Clearly, by

introducing new variables x́i = xi − ci we can arrange for the equilibrium point

to be transferred to the origin; we shall assume that this has been done for any

equilibrium point under consideration (there may well be several for a given system

(2.1) ) so that we have f(0, t) = 0, t ≥ t0.

An equilibrium state x = 0 is said to be

1. Stable if for any positive scalar ε there exists a positive scalar δ such

that ‖x(t0)‖e < δ implies ‖x(t)‖e < ε, t ≥ t0, where ‖.‖e is a standard Eucledian

norm.

2. Asymptotically stable if it is stable and if in addition x(t) → 0 as

t → +∞.
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3. Unstable if it is not stable; namely, there exists an ε > 0 such that for

every δ > 0 there exist an x(t0) with ‖x(t0)‖e < δ so that ‖x(t1)‖e ≥ ε for some

t1 > t0. If this holds for every x(t0) in ‖x(t0)‖e < δ the equilibrium is completely

unstable.

Definition 2.1.1 Consider a scalar function f(t) : <+ −→ <. Let the 2-norm (de-

noted by ‖.‖2) of f(t) be defined as

‖f(t)‖2 =

√∫ ∞

0

f 2(τ)dτ .

If ‖f(t)‖2 < +∞ then we say that the function f(t) belongs to the subspace L2 of

the space of all possible functions (i.e., f(t) ∈ L2). Let the ∞-norm (denoted by

‖.‖∞) of f(t) be defined as

‖f(t)‖∞ = sup
t
|f(t)|.

If ‖f(t)‖∞ < +∞ then we say that the function f(t) belongs to the subspace L∞

of the space of all possible functions (i.e., f(t) ∈ L∞).

Proposition 2.1.2 [4] Consider a scalar function g(t) : <+ −→ <. If g(t) ∈ L∞,

ġ(t) ∈ L∞, and g(t) ∈ L2 then

lim
t−→∞

g(t) = 0.

2.1.2 Algebraic Criteria for Linear Systems

Before studying nonlinear systems we return to the general continuous

time linear system.

ẋ = Ax, (2.2)

where A is a constant n × n matrix, and (2.2) may represent the closed or open

loop system. Provided det A 6= 0, the only equilibrium point of (2.2) is the origin,

so it is meaningful to refer to the stability of the system (2.2). The two basic

results on which the development of stability of linear system rely on are now

given.
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Theorem 2.1.3 The system (2.2) is asymptotically stable if and only if A is a

stability matrix, i.e. all the characteristic roots λk of A have negative real parts;

(2.2) is unstable if for some characteristic roots λk, <e(λk) > 0; and completely

unstable if for all characteristic roots λk, <e(λk) > 0.

See [3] for more details.

2.1.3 Lyapunov Theory

Consider autonomous system of nonlinear equations,

ẋ = f(x), f(0) = 0. (2.3)

We define a Lyapunov function V (x) as follows:

1. V (x) and all its partial derivatives
∂V

∂xi

are continuous.

2. V (x) is positive definite, i.e. V (0) = 0 and V (x) > 0 for x 6= 0 in some

neighbourhood ‖ x ‖≤ k of the origin.

3. The derivative of V with respect to (2.3), namely

V̇ =
∂V

∂x1

ẋ1 +
∂V

∂x2

ẋ2 + ... +
∂V

∂xn

ẋn

=
∂V

∂x1

f1 +
∂V

∂x2

f2 + ... +
∂V

∂xn

fn (2.4)

is negative semidefinite i.e. V̇ (0) = 0, and for all x satisfy ‖x‖ ≤ k, ˙V (x) ≤ 0.

Notice that in (2.4) the fi are the components of f in (2.3), so V̇ can be

determined directly from the system equations.

Theorem 2.1.4 The origin of (2.3) is stable if there exists a Lyapunov function

defined as above.

Theorem 2.1.5 The origin of (2.3) is asymptotically stable if there exists a Lya-

punov function whose derivative (2.4) is negative definite.

See [3] for more details.

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



6

2.1.4 Application of Lyapunov Theory to Linear Systems

The usefulness of linear theory can be extended by using the idea of lin-

earization. Suppose the components of f in (2.1) are such that we can apply

Taylor’s theorem to obtain

f(x) = Áx + g(x), (2.5)

by using f(0) = 0. In (2.5) Á denotes the n× n constant matrix having elements

(∂fi/∂xj)x=0, g(0) = 0 and the components of g have power series expansions in

x1, x2, ..., xn beginning with terms of at least second degree. The system

ẋ = Áx (2.6)

is called the first approximation to (2.1). We then have the following theorem.

Theorem 2.1.6 (Lyapunov’s linearization theorem) If (2.6) is asymptotically sta-

ble, or unstable, then the origin for ẋ = f(x), where f(x) is given by (2.5), has

the same stability property.

See [3] for more details.

2.2 Routh-Hurwitz Theorem

Consider the characteristic equation of matrix A

a(λ)
.
= det(λI − A) = λn + a1λ

n−1 + ... + an−1λ + an = 0 (2.7)

which determine the n eigenvalues λ of a real n× n square matrix A,

where I is the identity matrix.
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Theorem 2.2.1 The n× n Hurwitz matrix associated with a(λ) in (2.7) is

H =




a1 a3 a5 · · · a2n−1

1 a2 a4 · · · a2n−2

0 a1 a3 · · · a2n−3

0 1 a2 · · · a2n−4

· · · · · · ·
· · · · · · ·
0 0 0 · · · an




(2.8)

where ar = 0, r > n. Let Hi denote the ith leading principle minor of H. Then all

the roots of a(λ) have negative real parts (a(λ) is a Hurwitz polynomial) if and

only if Hi > 0, i = 1, 2, ..., n− 1.

If n = 3 then

|λI − A| = λ3 + a1λ
2 + a2λ + a3 = 0 (2.9)

In this case all of the eigenvalues λ have negative real parts if

H1 > 0, H2 > 0, (2.10)

or

(1) a1 > 0,

and (2)

∣∣∣∣∣∣
a1 a3

1 a2

∣∣∣∣∣∣
> 0 or a1a2 − a3 > 0.

Since we have assumed that the ai are real, it is easy to derive a simple

necessary condition for asymptotic stability.

Theorem 2.2.2 If the ai in (2.7) are real and a(λ) corresponds to an asymptoti-

cally stable system, then

ai > 0, i = 1, 2, ..., n
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2.3 Fourth-Order Runge-Kutta Method

In order to solve an initial-value problem

dx

dt
= f(t, x), x(t0) = x0 (2.11)

where x = [x1, x2, . . . , xn]T and f = [f1, f2, . . . , fn]T , we will use Runge-Kutta

method.

The well known Runge-Kutta method of the first stage and fourth order

is given by

Xi+1 = Xi +
1

6
(k1 + 2k2 + 2k3 + k4) (2.12)

where

k1 = hf(ti, Xi)

k2 = hf(ti +
h

2
, Xi +

k1

2
)

k3 = hf(ti +
h

2
, Xi +

k2

2
)

k4 = hf(ti + h,Xi + k3)

Xi is an approximation of x(ti) such that Xi = [Xi1, Xi2, . . . , Xin]T , ti = t0 + ih,

h is step size and ki = [ki1, ki2, . . . , kin]T ∀i = 1, . . . , 4.

2.4 Matrix Types

2.4.1 Symmetric Matrix

A real n× n matrix A is called symmetric if

AT = A.

2.4.2 Positive Definite Matrix

Consider a real n× n matrix A , A is called positive definite if

xT Ax > 0
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for all nonzero vectors x ∈ Rn, where xT denotes the transpose of x.

Equivalently, a symmetric matrix A is called positive definite if and only

if Di > 0, i = 1, 2, ..., n, where Di denotes leading principal minors.

2.4.3 Positive Semidefinite Matrix

A Positive semidefinite matrix is a symmetric matrix in which all of whose

eigenvalues are nonnegative.

Equivalently, a symmetric matrix A is called positive semidefinite if and

only if det(A) = 0 and Pi ≥ 0, i = 1, 2, ..., n, where Pi denotes principal minors.

2.4.4 Negative Definite Matrix

A negative definite matrix is a symmetric matrix in which all of whose

eigenvalues are negative.

Equivalent, a symmetric matrix A is called negative definite if and only if

(−1)iDi > 0, i = 1, 2, ..., n, where Di denotes leading principal minors.

2.4.5 Negative Semidefinite Matrix

A positive semidefinite matrix is a symmetric matrix in which all of whose

eigenvalues are nonpositive.

Equivalently, a symmetric matrix A is called negative semidefinite if and

only if det(A) = 0 and (−1)iPi ≥ 0, i = 1, 2, ..., n, where Pi denotes principal

minors.

If A satisfies none of the above then it is indefinite.

2.5 Synchronization

Consider the system of differential equations

ẋ = f(x) (2.13)

ẏ = g(y, x) (2.14)

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d



10

where x, y ∈ Rn, f , g : Rn → Rn are assumed to be analytic functions.

Let x(t, x0) and y(t, y0) be solutions to (2.13) and (2.14) respectively. The

solutions x(t, x0) and y(t, y0) are said to be synchronized if

lim
t→∞

‖ x(t, x0)− y(t, y0) ‖= 0.
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2.6 Terminology

- Chaos is characterized by three simple ideas. Firstly, chaotic systems are deter-

ministic, meaning they obey some simple rules. In general this means that we can

predict their behavior of short times. Secondly, chaotic systems have sensitively

dependence on initial conditions, which means we can’t predict their behavior for

long time. Finally, chaotic systems generally have underlying patterns, sometimes

called attractors.

- Chaotic behavior is the behavior of a system whose final state depends so sensi-

tively on the system’s precise initial state the behavior is in effect unpredictable

and can not be distinguished from a random process, even though it is strictly

deterministic in a mathematical sense. Also known as chaos.

- The sequence of solution value of differential equation or difference equation gen-

erated by this iteration procedure will be called the trajectory.

- Attractor is the set of points to which trajectories approach as the number of

iterations goes to infinity.

- The notation of equilibrium points (also called fixed points, singular points, crit-

ical points).

- An equation u(t) = f [x(t)], this equation is called the control rule or control law.
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